Цель:

  • Формирование понятия первообразной.
  • Подготовка к восприятию интеграла.
  • Формирование вычислительных навыков.
  • Воспитание чувства прекрасного (умение видеть красоту в необычном).

Математический анализ - совокупность разделов математики, посвященных исследованию функций и их обобщений методами дифференциального и интегрального исчислений.

Если до настоящего времени мы изучали раздел математического анализа, называемого диффренциальным исчислением, суть которого заключается в изучении функции в “малом”.

Т.е. исследование функции в достаточно малых окрестностях каждой точки определения. Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.

Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.

Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.

Пример №1 .

Пусть (х)`=3х 2 .
Найдем f(х).

Решение:

Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х 3 , ибо (х 3)`=3х 2
Однако, легко можно заметить, что f(х) находится неоднозначно.
В качестве f(х) можно взять
f(х)= х 3 +1
f(х)= х 3 +2
f(х)= х 3 -3 и др.

Т.к.производная каждой из них равно 3х 2 . (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х 3 +С, где С - любое постоянное действительное число.

Любую из найденных функций f(х) называют ПЕРВООБРАЗНОЙ для функции F`(х)= 3х 2

Определение. Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞).
Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

Как мы уже заметили, данная функция имеет бесконечное множество первообразных (смотри пример № 1).

Пример № 2. Функция F(х)=х есть первообразная для всех f(х)= 1/х на промежутке (0; +), т.к. для всех х из этого промежутка, выполняется равенство.
F`(х)= (х 1/2)`=1/2х -1/2 =1/2х

Пример № 3. Функция F(х)=tg3х есть первообразная для f(х)=3/cos3х на промежутке (-п/2; п/2),
т.к. F`(х)=(tg3х)`= 3/cos 2 3х

Пример № 4. Функция F(х)=3sin4х+1/х-2 первообразная для f(х)=12cos4х-1/х 2 на промежутке (0;∞)
т.к. F`(х)=(3sin4х)+1/х-2)`= 4cos4х-1/х 2

Лекция 2.

Тема: Первообразная. Основное свойство первообразной функции.

При изучении первообразной будем опираться на следующее утверждение. Признак постоянства функции: Если на промежутке J производная Ψ(х) функции равна 0, то на этом промежутке функция Ψ(х) постоянна.

Это утверждение можно продемонстрировать геометрически.

Известно, что Ψ`(х)=tgα, γде α-угол наклона касательной к графику функции Ψ(х) в точке с абсциссой х 0 . Если Ψ`(υ)=0 в любой точке промежутка J, то tgα=0 δля любой касательной к графику функции Ψ(х). Это означает, что касательная к графику функции в любой его точке параллельна оси абсцисс. Поэтому на указанном промежутке график функции Ψ(х) совпадает с отрезком прямой у=С.

Итак, функция f(х)=с постоянна на промежутке J, если f`(х)=0 на этом промежутке.

Действительно, для произвольного х 1 и х 2 из промежутка J по теореме о среднем значении функции можно записать:
f(х 2)- f(х 1)=f`(с) (х 2 - х 1), т.к. f`(с)=0, то f(х 2)= f(х 1)

Теорема: (Основное свойство первообразной функции)

Если F(х) одна из первообразных для функции f(х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.

Доказательство:

Пусть F`(х) = f (х), тогда (F(х)+С)`= F`(х)+С`= f (х), для х Є J.
Допустим существует Φ(х)- другая первообразная для f (х) на промежутке J, т.е. Φ`(х) = f (х),
тогда (Φ(х)- F(х))` = f (х) – f (х) = 0, для х Є J.
Это означает, что Φ(х)- F(х) постоянна на промежутке J.
Следовательно, Φ(х)- F(х) = С.
Откуда Φ(х)= F(х)+С.
Это значит, что если F(х) - первообразная для функции f (х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.
Следовательно, любые две первообразные данной функции отличаются друг от друга постоянным слагаемым.

Пример: Найти множество первообразных функции f (х) = cos х. Изобразить графики первых трех.

Решение: Sin х - одна из первообразных для функции f (х) = cos х
F(х) = Sin х+С –множество всех первообразных.

F 1 (х) = Sin х-1
F 2 (х) = Sin х
F 3 (х) = Sin х+1

Геометрическая иллюстрация: График любой первообразной F(х)+С можно получить из графика первообразной F(х) при помощи параллельного переноса r (0;с).

Пример: Для функции f (х) = 2х найти первообразную, график которой проходит через т.М (1;4)

Решение: F(х)=х 2 +С – множество всех первообразных, F(1)=4 - по условию задачи.
Следовательно, 4 = 1 2 +С
С = 3
F(х) = х 2 +3

Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.

Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.

Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.

Пример №1 .

Пусть (f(х))’ = 3х 2 . Найдем f(х).

Решение:

Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х 3 , ибо

(х 3)’ = 3х 2 Однако, легко можно заметить, что f(х) находится неоднозначно. В качестве f(х) можно взять f(х)= х 3 +1 f(х)= х 3 +2 f(х)= х 3 -3 и др.

Т.к. производная каждой из них равно 3х 2 . (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х 3 +С, где С - любое постоянное действительное число.

Любую из найденных функций f(х) называют первообразной для функции F`(х)= 3х 2

Определение.

Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞). Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

Как мы уже заметили, данная функция имеет бесконечное множество первообразных.

Пример №2.

Функция есть первообразная для всех на промежутке (0; +∞), т.к. для всех ч из этого промежутка, выполняется равенство.

Задача интегрирования состоит в том, чтобы для заданной функции найти все ее первообразные. При решении этой задачи важную роль играет следующее утверждение:

Признак постоянства функции. Если F"(х) = 0 на некотором промежутке I, то функция F - постоянная на этом промежутке.

Доказательство.

Зафиксируем некоторое x 0 из промежутка I. Тогда для любого числа х из такого промежутка в силу формулы Лагранжа можно указать такое число c, заключенное между х и x 0 , что

F(x) - F(x 0) = F"(c)(x-x 0).

По условию F’ (с) = 0, так как с ∈1, следовательно,

F(x) - F(x 0) = 0.

Итак, для всех х из промежутка I

т е. функция F сохраняет постоянное значение.

Все первообразные функции f можно записать с помощью одной формулы, которую называютобщим видом первообразных для функции f. Справедлива следующая теорема (основное свойство первообразных ):

Теорема. Любая первообразная для функции f на промежутке I может быть записана в виде

F(x) + C, (1) где F (х) - одна из первообразных для функции f (x) на промежутке I, а С - произвольная постоянная.

Поясним это утверждение, в котором кратко сформулированы два свойства первообразной:

  1. какое бы число ни поставить в выражение (1) вместо С, получим первообразную для f на промежутке I;
  2. какую бы первообразную Ф для f на промежутке I ни взять, можно подобрать такое число С, что для всех х из промежутка I будет выполнено равенство

Доказательство.

  1. По условию функция F - первообразная для f на промежутке I. Следовательно, F"(х)= f (х) для любого х∈1, поэтому (F(x) + C)" = F"(x) + C"=f(x)+0=f(x), т. е. F(x) + C - первообразная для функции f.
  2. Пусть Ф (х) - одна из первообразных для функции f на том же промежутке I, т. е. Ф"(x) = f (х) для всех x∈I.

Тогда (Ф(x) - F (x))" = Ф"(х)-F’ (х) = f(x)-f(x)=0.

Отсюда следует в. силу признака постоянства функции, что разность Ф(х) - F(х) есть функция, принимающая некоторое постоянное значение С на промежутке I.

Таким образом, для всех х из промежутка I справедливо равенство Ф(х) - F(x)=С, что и требовалось доказать. Основному свойству первообразной можно придать геометрический смысл: графики любых двух первообразных для функции f получаются друг из друга параллельным переносом вдоль оси Оу

Вопросы к конспектам

Функция F(x) является первообразной для функции f(x). Найдите F(1), если f(x)=9x2 - 6x + 1 и F(-1) = 2.

Найдите все первообразные для функции

Для функции (x) = cos2 * sin2x, найдите первообразную F(x), если F(0) = 0.

Для функции найдите первообразную, график которой проходит через точку

Мы убедились в том, что производная имеет многочисленные применения: производная - это скорость движения (или, обобщая, скорость протекания любого процесса); производная - это угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; производная помогает решать задачи на оптимизацию.

Но в реальной жизни приходится решать и обратные задачи: например, наряду с задачей об отыскании скорости по известному закону движения встречается и задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой u = tg. Найти закон движения.

Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = u"(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна tg. Нетрудно догадаться, что

Сразу заметим, что пример решен верно, но неполно. Мы получили, что На самом деле, задача имеет бесконечно много решений: любая функция вида произвольная константа, может служить законом движения, поскольку


Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например, при t=0. Если, скажем, s(0) = s 0 , то из равенства получаем s(0) = 0+С, т.е.S 0 = С. Теперь закон движения определен однозначно:
В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения: например, возведение в квадрат (х 2) и извлечение квадратного корня синус(sinх) и арксинус (аrcsin х) и т.д. Процесс отыскания производной по заданной функции называют дифференцированием, а обратную операцию, т.е. процесс отыскания функции по заданной производной - интегрированием.
Сам термин «производная» можно обосновать «по-житейски»: функция у - f(х) «производит на свет» новую функцию у"= f"(x) Функция у = f(х) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у"=f"(х), первичный образ, или, короче, первообразная.

Определение 1. Функцию у = F(х) называют первообразной для функции у = f(х) на заданном промежутке X, если для всех х из X выполняется равенство F"(х)=f(х).

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры:

1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для всех х справедливо равенство (х 2)" =2х.
2) функция у - х 3 является первообразной для функции у-Зх 2 , поскольку для всех х справедливо равенство (х 3)" = Зх 2 .
3) Функция у-sinх является первообразной для функции у=соsх, поскольку для всех х справедливо равенство (sinх)" =соsх.
4) Функция являетя первообразной для функции на промежутке поскольку для всех х > 0 справедливо равенство
Вообще, зная формулы для отыскания производных, нетрудно составить таблицу формул для отыскания первообразных.


Надеемся, вы поняли, как составлена эта таблица: производная функции, которая записана во втором столбце, равна той функции, которая записана в соответствующей строке первого столбца (проверьте, не поленитесь, это очень полезно). Например, для функции у = х 5 первообразной, как вы установите, служит функция (см. четвертую строку таблицы).

Замечания: 1. Ниже мы докажем теорему о том, что если у = F(х) - первообразная для функции у = f(х), то у функции у = f(х)бесконечно много первообразных и все они имеют вид у = F(х) + С. Поэтому правильней было бы во втором столбце таблицы всюду добавить слагаемое С, где С - произвольное действительное число.
2. Ради краткости иногда вместо фразы «функция у = F(х) является первообразной для функции y = f(x)», говорят F(х) - первообразная для f(x)».

2. Правила отыскания первообразных

При отыскании первообразных, как и при отыскании производных, используются не только формулы (они указаны в таблице на с. 196), но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило отыскания первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Обращаем ваше внимание на некоторую «легковесность» этой формулировки. На самом деле следовало бы сформулировать теорему: если функции у = f(х) и у=g{х) имеют на промежутке X первообразные, соответственно у-F(х) и у-G(х), то и сумма функций у = f(х)+g(х) имеет на промежутке X первообразную, причем этой первообразной является функция у = F(х)+G(х). Но обычно, формулируя правила (а не теоремы), оставляют только ключевые слова - так удобнее для применения правила на практике

Пример 2. Найти первообразную для функции у = 2х + соз х.

Решение. Первообразной для 2х служит х"; первообразной для созх служит sin х. Значит, первообразной для функции у=2х + соз х будет служить функция у = х 2 + sin х (и вообще любая функция вида У = х 1 + sinх + С).
Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило отыскания первообразных.

Правило 2. Постоянный множитель можно вынести за знак первообразной.

Пример 3.

Ре ш е н и е. а) Первообразной для sin х служит -соз х; значит, для функции у = 5 sin х первообразной будет функция у = -5соз х.

б) Первообразной для соз x служит sin x; значит, для функции первообразной будет функция
в) Первообразной для х 3 служит первообразной для х служит первообразной для функции у = 1 служит функция у = х. Используя первое и второе правила отыскания первообразных, получим, что первообразной для функции у = 12х 3 + 8х-1 служит функция
Замечание. Как известно, производная произведения не равна произведению производных (правило дифференцирования произведения более сложное) и производная частного не равна частному от производных. Поэтому нет и правил для отыскания первообразной от произведения или первообразной от частного двух функций. Будьте внимательны!
Получим еще одно правило отыскания первообразных. Мы знаем, что производная функции у = f(кх+m) вычисляется по формуле

Это правило порождает соответствующее правило отыскания первообразных.
Правило 3. Если у = F(х) - первообразная для функции у = f(х), то первообразной для функции у=f(кх+m) служит функция

В самом деле,


Это и означает, что является первообразной для функции у = f(кх+m).
Смысл третьего правила заключается в следующем. Если вы знаете, что первообразной для функции у = f(х) является функция у = F(х),а.вам нужно найти первообразную функции у = f(кх+m), то действуйте так: берите ту же самую функцию F, но вместо аргумента х подставьте выражение кх+m; кроме того, не забудьте перед знаком функции записать «поправочный множитель»
Пример 4. Найти первообразные для заданных функций:

Решение , а) Первообразной для sin х служит -соз х; значит, для функции у = sin2х первообразной будет функция
б) Первообразной для соз х служит sin х; значит, для функции первообразной будет функция

в) Первообразной для х 7 служит значит, для функции у=(4-5х) 7 первообразной будет функция

3. Неопределенный интеграл

Выше мы уже отмечали, что задача отыскания первообразной для заданной функции у = f(х)имеет не одно решение. Обсудим этот вопрос более детально.

Доказательство. 1. Пусть у = F(х) - первообразная для функции у = f(х) на промежутке X. Это значит, что для всех х из X выполняется равенство x"(х) = f(х). Найдем производную любой функции вида у = F(х)+С:
(F(х) +С) = F"(х) +С = f(x) +0 = f(x).

Итак, (F(х)+С) = f(х). Это значит, что у = F(х) +С является первообразной для функции у = f(х).
Таким образом, мы доказали, что если у функции у = f(х) есть первообразная у=F(х), то у функции {f = f(x) бесконечно много первообразных, например, любая функция вида у = F(х)+С является первообразной.
2. Докажем теперь, что указанным видом функций исчерпывается все множество первообразных.

Пусть у=F 1 (х) и у=F(х) - две первообразные для функции У = f(x)на промежутке X. Это значит, что для всех х из промежутка X выполняются соотношения: F^ (х) = f(х); F"(х) = f(х).

Рaсмотрим функцию у = F 1 (х) -.F(х) и найдем ее производную: (F, (х) -F(х))" = F[(х)-F(х) = f(х) - f(х) = 0.
Известно, что если производная функции на промежутке X тождественно равна нулю, то функция постоянна на промежутке X (см. теорему 3 из § 35). Значит, F 1 (х)-F(х) =С, т.е. Fх) = F(х)+С.

Теорема доказана.

Пример 5. Задан закон изменения скорости от времени v = -5sin2t. Найти закон движения s = s(t), если известно, что в момент времени t=0 координата точки равнялась числу 1,5 (т.е. s(t) = 1,5).

Решение. Так как скорость - производная координаты как функции от времени, то нам прежде всего нужно найти первообразную от скорости, т.е. первообразную для функции v = -5sin2t. Одной из таких первообразных является функция , а множество всех первообразных имеет вид:

Чтобы найти конкретное значение постоянной С, воспользуемся начальными условиями, согласно которым, s(0) = 1,5. Подставив в формулу (1) значения t=0, S = 1,5, получим:

Подставив найденное значение С в формулу (1), получим интересующий нас закон движения:

Определение 2. Если функция у = f(х) имеет на промежутке X первообразную у = F(х), то множество всех первообразных, т.е. множество функций вида у = F(х) + С, называют неопределенным интегралом от функции у = f(x) и обозначают:

(читают: «неопределенный интеграл эф от икс дэ икс»).
В следующем параграфе мы выясним, в чем состоит скрытый смысл указанного обозначения.
Опираясь на имеющуюся в этом параграфе таблицу первообразных, составим таблицу основных неопределенных интегралов:

Опираясь на приведенные выше три правила отыскания первообразных, мы можем сформулировать соответствующие правила интегрирования.

Правило 1. Интеграл от суммы функций равен сумме интегралов этих функций:

Правило 2. Постоянный множитель можно вынести за знак интеграла:

Правило 3. Если

Пример 6. Найти неопределенные интегралы:

Решение , а) Воспользовавшись первым и вторым правилами интегрирования, получим:


Теперь воспользуемся 3-й и 4-й формулами интегрирования:

В итоге получаем:

б) Воспользовавшись третьим правилом интегрирования и формулой 8, получим:


в) Для непосредственного нахождения заданного интеграла у нас нет ни соответствующей формулы, ни соответствующего правила. В подобных случаях иногда помогают предварительно выполненные тождественные преобразования выражения, содержащегося под знаком интеграла.

Воспользуемся тригонометрической формулой понижения степени:

Тогда последовательно находим:

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе

Первообразная функция и неопределённый интеграл

Факт 1. Интегрирование - действие, обратное дифференцированию, а именно, восстановление функции по известной производной этой функции. Восстановленная таким образом функция F (x ) называется первообразной для функции f (x ).

Определение 1. Функция F (x f (x ) на некотором промежутке X , если для всех значений x из этого промежутка выполняется равенство F "(x )=f (x ), то есть данная функция f (x ) является производной от первообразной функции F (x ). .

Например, функция F (x ) = sin x является первообразной для функции f (x ) = cos x на всей числовой прямой, так как при любом значении икса (sin x )" = (cos x ) .

Определение 2. Неопределённым интегралом функции f (x ) называется совокупность всех её первообразных . При этом употребляется запись

f (x )dx

,

где знак называется знаком интеграла, функция f (x ) – подынтегральной функцией, а f (x )dx – подынтегральным выражением.

Таким образом, если F (x ) – какая-нибудь первообразная для f (x ) , то

f (x )dx = F (x ) +C

где C - произвольная постоянная (константа).

Для понимания смысла множества первообразных функции как неопределённого интеграла уместна следующая аналогия. Пусть есть дверь (традиционная деревянная дверь). Её функция - "быть дверью". А из чего сделана дверь? Из дерева. Значит, множеством первообразных подынтегральной функции "быть дверью", то есть её неопределённым интегралом, является функция "быть деревом + С", где С - константа, которая в данном контексте может обозначать, например, породу дерева. Подобно тому, как дверь сделана из дерева при помощи некоторых инструментов, производная функции "сделана" из первообразной функции при помощи формулы, которую мы узнали, изучая производную .

Тогда таблица функций распространённых предметов и соответствующих им первообразных ("быть дверью" - "быть деревом", "быть ложкой" - "быть металлом" и др.) аналогична таблице основных неопределённых интегралов, которая будет приведена чуть ниже. В таблице неопределённых интегралов перечисляются распространённые функции с указанием первообразных, из которых "сделаны" эти функции. В части задач на нахождение неопределённого интеграла даны такие подынтегральные функции, которые без особых услилий могут быть проинтегрированы непосредственно, то есть по таблице неопределённых интегралов. В задачах посложнее подынтегральную функцию нужно предварительно преобразовать так, чтобы можно было использовать табличные интегралы.

Факт 2. Восстанавливая функцию как первообразную, мы должны учитывать произвольную постоянную (константу) C , а чтобы не писать список первообразной с различными константами от 1 до бесконечности, нужно записывать множество первообразных с произвольной константой C , например, так: 5x ³+С . Итак, произвольная постоянная (константа) входит в выражение первообразной, поскольку первообразная может быть функцией, например, 5x ³+4 или 5x ³+3 и при дифференцировании 4 или 3, или любая другая константа обращаются в нуль.

Поставим задачу интегрирования: для данной функции f (x ) найти такую функцию F (x ), производная которой равна f (x ).

Пример 1. Найти множество первообразных функции

Решение. Для данной функции первообразной является функция

Функция F (x ) называется первообразной для функции f (x ), если производная F (x ) равна f (x ), или, что одно и то же, дифференциал F (x ) равен f (x ) dx , т.е.

(2)

Следовательно, функция - первообразная для функции . Однако она не является единственной первообразной для . Ими служат также функции

где С – произвольная постоянная. В этом можно убедиться дифференцированием.

Таким образом, если для функции существует одна первообразная, то для неё существует бесконечное множество первообразных, отличающихся на постоянное слагаемое. Все первообразные для функции записываются в приведённом выше виде. Это вытекает из следующей теоремы.

Теорема (формальное изложение факта 2). Если F (x ) – первообразная для функции f (x ) на некотором промежутке Х , то любая другая первообразная для f (x ) на том же промежутке может быть представлена в виде F (x ) + C , где С – произвольная постоянная.

В следующем примере уже обращаемся к таблице интегралов, которая будет дана в параграфе 3, после свойств неопределённого интеграла. Делаем это до ознакомления со всей таблицей, чтобы была понятна суть вышеизложенного. А после таблицы и свойств будем пользоваться ими при интегрировании во всей полносте.

Пример 2. Найти множества первообразных функций:

Решение. Находим множества первообразных функций, из которых "сделаны" данные функции. При упоминании формул из таблицы интегралов пока просто примите, что там есть такие формулы, а полностью саму таблицу неопределённых интегралов мы изучим чуть дальше.

1) Применяя формулу (7) из таблицы интегралов при n = 3, получим

2) Используя формулу (10) из таблицы интегралов при n = 1/3, имеем

3) Так как

то по формуле (7) при n = -1/4 найдём

Под знаком интеграла пишут не саму функцию f , а её произведение на дифференциал dx . Это делается прежде всего для того, чтобы указать, по какой переменной ищется первообразная. Например,

, ;

здесь в обоих случаях подынтегральная функция равна , но её неопределённые интегралы в рассмотренных случаях оказываются различными. В первом случае эта функция рассматривается как функция от переменной x , а во втором - как функция от z .

Процесс нахождения неопределённого интеграла функции называется интегрированием этой функции.

Геометрический смысл неопределённого интеграла

Пусть требуется найти кривую y=F(x) и мы уже знаем,что тангенс угла наклона касательной в каждой её точке есть заданная функция f(x) абсциссы этой точки.

Согласно геометрическому смыслу производной, тангенс угла наклона касательной в данной точке кривой y=F(x) равен значению производной F"(x) . Значит, нужно найти такую функцию F(x) , для которой F"(x)=f(x) . Требуемая в задаче функция F(x) является первообразной от f(x) . Условию задачи удовлетворяет не одна кривая, а семейство кривых. y=F(x) - одна из таких кривых, а всякая другая кривая может быть получена из неё параллельным переносом вдоль оси Oy .

Назовём график первообразной функции от f(x) интегральной кривой. Если F"(x)=f(x) , то график функции y=F(x) есть интегральная кривая.

Факт 3. Неопределённый интеграл геометрически представлен семеством всех интегральных кривых , как на рисунке ниже. Удалённость каждой кривой от начала координат определяется произвольной постоянной (константой) интегрирования C .

Свойства неопределённого интеграла

Факт 4. Теорема 1. Производная неопределённого интеграла равна подынтегральной функции, а его дифференциал – подынтегральному выражению.

Факт 5. Теорема 2. Неопределённый интеграл от дифференциала функции f (x ) равен функции f (x ) с точностью до постоянного слагаемого , т.е.

(3)

Теоремы 1 и 2 показывают, что дифференцирование и интегрирование являются взаимно-обратными операциями.

Факт 6. Теорема 3. Постоянный множитель в подынтегральном выражении можно выносить за знак неопределённого интеграла , т.е.

Таблица первообразных

Определение. Функция F(x) на заданном промежутке называется первообразной для функции f(x) , для всех x из этого промежутка, если F"(x)=f(x) .

Операция нахождение первообразной для функции называется интегрированием . Она является обратной к операции дифференцирования.

Теорема. Всякая непрерывная на промежутке функция (x) имеет первообразную на этом же промежутке.

Теорема (основное свойство первообразной). Если на некотором промежутке функция F(x) является первообразной для функции f(x ), то на этом промежутке первообразной для f(x) будет также функция F(x)+C , где C произвольная постоянная.

Из этой теоремы выплывает, что когда f(x) имеет на заданном промежутке первообразную функцию F(x) , то этих первобытных множество. Придавая C произвольных числовых значений, каждый раз будем получать первообразную функцию.

Для нахождения первообразных пользуются таблицей первообразных . Она получается из таблицы производных.

Понятие неопределенного интеграла

Определение. Совокупность всех первообразных функций для функции f(x) называется неопределенным интегралом и обозначается .

При этом f(x) называется подынтегральной функцией , а f(x) dx - подынтегральным выражением .

Следовательно, если F(x) , является первообразной для f(x) , то .

Свойства неопределенного интеграла

Понятие определенного интеграла

Рассмотрим плоскую фигуру, ограниченную графиком непрерывной и неотрицательной на отрезке [а; b] функции f(x) , отрезком [а; b] , и прямыми x=a и x=b .

Полученная фигура называется криволинейной трапецией . Вычислим ее площадь.

Для этого разобьем отрезок [а; b] на n равных отрезков. Длины каждого из отрезков равняются Δx .

Это динамический рисунок GeoGebra .
Красные элементы можно изменять

Рис. 1. Понятие определенное интеграла

На каждом отрезке, построим прямоугольники с высотами f(x k-1) (Рис. 1).

Площадь каждого такого прямоугольника равняется S k = f(x k-1)Δx k .

Площадь всех таких прямоугольников равняется .

Эту сумму называют интегральной суммой для функции f(x) .

Если n→∞ то площадь построенной таким образом фигуры будет все менее отличаться от площади криволинейной трапеции.

Определение. Граница интегральной суммы, когда n→∞ называется определенным интегралом , и записывается так:.

читается: "интеграл от a к b f от xdx "

Число а называется нижним пределом интегрирования, b – верхним пределом интегрирования, отрезок [а; b] – промежутком интегрирования.

Свойства определенного интеграла

Формула Ньютона-Лейбница

Определенный интеграл тесно связан с первообразной и неопределенным интегралом формулой Ньютона-Лейбница

.

Использование интеграла

Интегральное исчисление широко используется при решении разнообразных практических задач. Рассмотрим некоторые из них.

Вычисление объемов тел

Пусть задана функция, которая задает площадь поперечного сечения тела в зависимости от некоторой переменной S = s(x), x[а; b] . Тогда объем данного тела можно найти интегрируя данную функцию в соответствующих пределах.

Если нам задано тело, которое получено вращением вокруг оси Ох криволинейной трапеции ограниченной некоторой функцией f(x), x [а; b] . (Рис. 3). То площади поперечных сечений можно вычислить по известной формуле S = π f 2 (x) . Поэтому формула объема такого тела вращения