Вначале решим более общую задачу нахождения магнитной индукции на оси витка с током. Для этого сделаем рисунок 3.8, на котором изобразим элемент тока и вектор магнитной индукции , который он создает на оси кругового контура в некоторой точке .

Рис. 3.8 Определение магнитной индукции

на оси кругового витка с током

Вектор магнитной индукции , создаваемый бесконечно малым элементом контура может быть определен с помощью закона Био-Савара-Лапласа (3.10).

Как следует из правил векторного произведения, магнитная индукция будет перпендикулярна плоскости, в которой лежат вектора и , поэтому модуль вектора будет равен

.

Для нахождения полной магнитной индукции от всего контура необходимо векторно сложить от всех элементов контура, т. е. фактически сосчитать интеграл по длине кольца

Данный интеграл можно упростить, если представить в виде суммы двух составляющих и

При этом в силу симметрии , поэтому результирующий вектор магнитной индукции будет лежать на оси . Следовательно, для нахождения модуля вектора нужно сложить проекции всех векторов , каждая из которых равна

.

Учитывая, что и , получим для интеграла следующее выражение

Нетрудно заметить, что вычисление получившегося интеграла даст длину контура, т. е. . В итоге суммарная магнитная индукция, создаваемая круговым контуром на оси в точке , равна

. (3.19)

Используя магнитный момент контура, формулу (3.19) можно переписать следующим образом

.

Теперь отметим, что полученное в общем виде решение (3.19) позволяет проанализировать предельный случай, когда точка помещена в центре витка. В этом случае и решение для магнитной индукции поля в центре кольца с током примет вид

Результирующий вектор магнитной индукции (3.19) направлен вдоль оси тока, а его направление связано с направлением тока правилом правого винта (рис. 3.9).

Рис. 3.9 Определение магнитной индукции

в центре кругового витка с током

Индукция магнитного поля в центре дуги окружности

Данная задача может быть решена как частный случай рассмотренной в предыдущем пункте задачи. В этом случае интеграл в формуле (3.18) следует брать не по всей длине окружности, а только по ее дуге l . А также учесть то, что индукция ищется в центре дуги, поэтому . В результате получим

, (3.21)

где – длина дуги; – радиус дуги.

5 Вектор индукции магнитного поля движущегося в вакууме точечного заряда (без вывода формулы)

,

где – электрический заряд; – постоянная нерелятивистская скорость; – радиус-вектор, проведенный от заряда к точке наблюдения.

Силы Ампера и Лоренца

Опыты по отклонению рамки с током в магнитном поле показывают, что на всякий проводник с током, помещенный в магнитное поле, действует механическая сила, называемая силой Ампера .

Закон Ампера определяет силу, действующую на проводник с током, помещенный в магнитное поле:

; , (3.22)

где – сила тока; – элемент длины провода (вектор совпадает по направлению с током ); – длина проводника. Сила Ампера перпендикулярна направлению тока и направлению вектора магнитной индукции.

Если прямолинейный проводник длиной находится в однородном поле, то модуль силы Ампера определяется выражением (рис. 3.10):

Сила Ампера всегда направлена перпендикулярно плоскости, содержащей векторы и , а ее направление как результат векторного произведения определяется правилом правого винта: если смотреть вдоль вектора , то поворот от к по кратчайшему пути должен происходить по часовой стрелке.

Рис. 3.10 Правило левой руки и правило буравчика для силы Ампера

С другой стороны, для определения направления силы Ампера можно также применить мнемоническоеправило левой руки (рис. 3.10): нужно поместить ладонь так, чтобы силовые линии магнитной индукции входили в нее, вытянутые пальцы показывали направление тока, тогда отогнутый большой палец укажет направление силы Ампера.

Исходя из формулы (3.22), найдем выражение для силы взаимодействия двух бесконечно длинных, прямых, параллельных друг другу проводников, по которым текут токи I 1 и I 2 (рис. 3.11) (опыт Ампера). Расстояние между проводами равно a.

Определим силу Ампера dF 21 , действующую со стороны магнитного поля первого тока I 1 на элемент l 2 dl второго тока.

Величина магнитной индукции этого поля B 1 в точке расположения элемента второго проводника с током равна

Рис. 3.11 Опыт Ампера по определению силы взаимодействия

двух прямолинейных токов

Тогда с учетом (3.22) получим

. (3.24)

Рассуждая точно так же, можно показать, что сила Ампера, действующая со стороны магнитного поля, создаваемого вторым проводником с током, на элемент первого проводника I 1 dl , равна

,

т. e. dF 12 = dF 21 . Таким образом, мы вывели формулу (3.1), которая была получена Ампером экспериментальным путем.

На рис. 3.11 показано направление сил Ампера. В случае, когда токи направлены в одну и ту же сторону, то это ‑ силы притяжения, а в случае токов разного направления ‑ силы отталкивания.

Из формулы (3.24), можно получить силу Ампера, действующую на единицу длины проводника

. (3.25)

Таким образом, сила взаимодействия двух параллельных прямых проводников с токами прямо пропорциональна произведению величин токов и обратно пропорциональна расстоянию между ними .

Закон Ампера утверждает, что на элемент с током, помещенный в магнитное поле, действует сила. Но всякий ток есть перемещение заряженных частиц. Естественно предположить, что силы, действующие на проводник с током в магнитном поле, обусловлены силами, действующими на отдельные движущиеся заряды. Этот вывод подтверждается рядом опытов (например, электронный пучок в магнитном поле отклоняется).

Найдем выражение для силы, действующей на заряд, движущийся в магнитном поле, исходя из закона Ампера. Для этого в формулу, определяющую элементарную силу Ампера

подставим выражение для силы электрического тока

,

где I – сила тока, протекающего через проводник; Q – величина полного заряда протекшего за время t ; q – величина заряда одной частицы; N – общее число заряженных частиц, прошедших через проводник объемом V , длиной l и сечением S; n – число частиц в единице объема (концентрация); v – скорость частицы.

В результате получим:

. (3.26)

Направление вектора совпадаёт с направлением скорости v , поэтому их можно поменять местами.

. (3.27)

Эта сила действует на все движущиеся заряды в проводнике длиной и сечением S , число таких зарядов:

Следовательно, сила, действующая на один заряд, будет равна:

. (3.28)

Формула (3.28) определяет силу Лоренца , величина которой

где a - угол между векторами скорости частицы и магнитной индукции.

В экспериментальной физике часто встречается ситуация, когда заряженная частица движется одновременно и в магнитном и электрическом поле. В этом случае рассматривают полную силу Лоренца в виде

,

где – электрический заряд; – напряженность электрического поля; – скорость частицы; – индукция магнитного поля.

Только в магнитном поле на движущуюся заряженную частицу действует магнитная составляющая силы Лоренца (рис. 3.12)

Рис. 3.12 Сила Лоренца

Магнитная составляющая силы Лоренца перпендикулярна вектору скорости и вектору магнитной индукции. Она не изменяет величины скорости, а изменяет только ее направление, следовательно, работы не совершает.

Взаимная ориентация трех векторов ‑ , и , входящих в (3.30), показана на рис. 313 для положительно заряженной частицы.

Рис. 3.13 Сила Лоренца, действующая на положительный заряд

Как видно из рис. 3.13, если частица влетает в магнитное поле под углом к силовым линиям , то она равномерно движется в магнитном поле по окружности радиусом и периодом обращения:

где – масса частицы.

Отношение магнитного момента к механическому L (моменту импульса) заряженной частицы, движущейся по круговой орбите,

где ‑ заряд частицы; т ‑ масса частицы.

Рассмотрим общий случай движения заряженной частицы в однородном магнитном поле, когда ее скорость направлена под произвольным углом a к вектору магнитной индукции (рис. 3.14). Если заряженная частица влетает в однородное магнитное поле под углом , то она движется по винтовой линии.

Разложим вектор скорости на составляющие v || (параллельную вектору ) и v ^ (перпендикулярную вектору ):

Наличие v ^ приводит к тому, что на частицу будет действовать сила Лоренца и она будет двигаться по окружности радиусом R в плоскости перпендикулярной вектору :

.

Период такого движения (время одного витка частицы по окружности) равен

.

Рис. 3.14 Движение по винтовой линии заряженной частицы

в магнитном поле

За счет наличия v || частица будет двигаться равномерно вдоль , так как на v || магнитное поле не действует.

Таким образом, частица участвует одновременно в двух движениях. Результирующая траектория движения представляет собой винтовую линию, ось которой совпадает с направлением индукции магнитного поля. Расстояние h между соседними витками называется шагом винтовой линии и равно:

.

Действие магнитного поля на движущийся заряд находит большое практическое применение, в частности, в работе электронно-лучевой трубки, где используется явление отклонения заряженных частиц электрическим и магнитным полями, а также в работе масс-спектрографов, позволяющих определить удельный заряд частиц (q/m ) и ускорителей заряженных частиц (циклотронов).

Рассмотрим один такой пример, назыаемый «магнитной бутылкой» (рис. 3.15). Пусть неоднородное магнитное поле создано двумя витками с токами, протекающими в одном направлении. Сгущение линий индукции в какой-либо пространнственной области означает большее значение величины магнитной индукции в этой области. Индукция магнитного поля вблизи витков с током больше, чем в пространстве между ними. По этой причине радиус винтовой линии траектории частицы, обратно пропорциональный модулю индукции, меньше вблизи витков, чем в пространстве между ними. После того, как частица, двигаясь вправо по винтовой линии, пройдет среднюю точку, сила Лоренца, действующая на чатицу, приобретает компоненту , тормозящую ее движение вправо. В определенный момент эта компонента силы останавливает движение частицы в этом направлении и отталкивает ее влево к витку 1. При приближении заряженной частицы к витку 1 она также тормозится и начинает циркулировать между витками, оказавшись в магнитной ловушке, или между «магнитными зеркалами». Магнитные ловушки используются для удержания в определенной области пространства высокотемпературной плазмы ( К) при управляемом термоядерном синтезе.

Рис. 3.15 Магнитная «бутылка»

Закономерностями движения заряженных частиц в магнитном поле можно объяснить особенности движения космических лучей вблизи Земли. Космические лучи – это потоки заряженных частиц большой энергии. При приближении к поверхности Земли эти частицы начинают испытывать действие магнитного поля Земли. Те из них, которые направляются к магнитным полюсам, будут двигаться почти вдоль линий земного магнитного поля и навиваться на них. Заряженные частицы, подлетающие к Земле вблизи экватора, направлены почти перпендикулярно к линиям магнитного поля, их траектория будет искривляться. и лишь самые быстрые из них достигнут поверхности Земли (рис. 3.16).

Рис. 3.16 Образование Полярного сияния

Поэтому интенсивность космических лучей доходящих до Земли вблизи экватора, заметно меньше, чем вблизи полюсов. С этим связан тот факт что, Полярное сияние наблюдается главным образом в приполярных областях Земли.

Эффект Холла

В 1880г. американский физик Холл провел следующий опыт: он пропускал постоянный электрический ток I через пластинку из золота и измерял разность потенциалов между противолежащими точками A и C на верхней и нижней гранях (рис. 3.17).

В 1820 году датский ученый Ганс Христиан Эрстед свершил выдающееся открытие – магнитное действие электрического тока. Эстафету исследований и открытий в области электромагнетизма подхватили французские ученые: Араго, Био, Савар, и, конечно же, Андре Мари Ампер.

Направление силовых линий магнитного поля

Эрстед обнаружил, что если проводник установить вертикально и вокруг него расположить небольшие магнитные стрелки на подставках, то при прохождении тока в проводнике, стрелки повернутся так, что полюс одной из них будет направлен на противоположный полюс другой. Если стрелки мысленно соединить линией, проходящей через полюсы, то линия окажется замкнутой окружностью. Это наблюдение позволяет делать вывод о вихревом характере магнитного поля вокруг проводника с током (рис. 1).

Рис. 1. Магнитное поле вокруг проводника с током

Теперь посмотрим, что будет, если изменить направление тока. Стрелки по-прежнему образуют круг, но развернулись на 180 градусов. Значит, можно говорить о направлении вихрей, которые образуют магнитные линии.

Исследуя этот феномен, Ампер предложил считать за направление силовых линий направление от северного полюса магнита к южному полюсу . Это предложение позволяет связать между собой направление магнитных линий вокруг проводника с током и направление тока в проводнике.

Соединим нижний конец проводника с положительным полюсом источника (+), а верхний – с отрицательным (–). Таким образом, мы знаем направление тока в проводнике. Замкнем цепь. Обратим внимание, как расположились стрелки. Теперь, если обхватить проводник пальцами правой руки по линии, соединяющей северный полюс одной стрелки с южным полюсом другой стрелки, то отставленный вдоль проводника большой палец будет как раз указывать направление тока – от плюса к минусу.

Наверное, приблизительно так рассуждая, Андре-Мари Ампер предложил правило «правой руки» (рис. 2).

Если обхватить проводник правой рукой, направив отогнутый большой палец по направлению тока, то направление обхвата проводника покажет направление линий магнитного поля.

Рис. 2. Правило правой руки

Еще один способ определения взаимосвязи направления тока и направления линий магнитного поля называется правилом буравчика (рис. 3).

Если ввинчивать буравчик по направлению тока в проводнике, то направление движения рукоятки буравчика укажет направление линий магнитного поля.

Рис. 3. Правило буравчика

Взаимодействие токов. Закон Ампера

Одним из следующих серьезных шагов Ампера было открытие взаимодействия двух параллельных проводников.

Ампер выяснил, что два параллельных проводника с током притягиваются, если токи в них направлены в одном направлении, и отталкиваются, если тоги направлены в разных направлениях (рис. 4).

Рис. 4. Взаимодействие параллельных проводников

Таким образом, гениальная догадка Ампера о том, что магнитные взаимодействия есть взаимодействия электрических токов, высказанная Ампером в первый же день знакомства с опытами Эрстеда, подтвердилась экспериментально.

Это открытие позволило Амперу изучить силу взаимодействия токов и вывести известный закон (закон Ампера) . В наиболее простом случае он имеет вид:

,

Сила взаимодействия двух параллельных проводников с токами пропорциональна величинам токов в элементарных отрезках и обратно пропорциональна расстоянию между элементами проводников .

Закон Ампера в простом его виде для прямых однородных проводников позволяет установить единицу силы тока на основе прямых измерений. Действительно, измеряя силы взаимодействия проводников и зная расстояние между ними, мы можем точно определить величину тока в проводниках и таким образом установить ток в один ампер.

Ампер есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2·10 −7 ньютона .

В формуле коэффициент k – коэффициент пропорциональности, численное значение которого зависит от выбора системы единиц. В СИ этот коэффициент имеет следующее выражение: (здесь «мю нулевое» – это магнитная постоянная).

Магнитное поле кругового тока (виток с током)

Затем Ампер исследовал, как будет вести себя проводник, скрученный в кольцо – виток. Оказалось, что виток с током ведет себя подобно магнитной стрелке (рис. 5).

Рис. 5. Виток с током

Это значит, что на виток с током в магнитном поле, скажем, между двумя полюсами магнита, будет действовать момент сил, стремящийся развернуть виток с током так, чтобы его плоскость была перпендикулярна магнитным линиям. Опыт показывает, что угол разворота рамки с током зависит от величины тока в рамке и от самих магнитов, или силы магнитного поля. Следовательно, такой виток с током, или как говорят, круговой ток, можно использовать для анализа силовых свойств магнитного поля (рис. 6).

Рис. 6. Рамка с током в магнитном поле

Вектор магнитной индукции

Разместим виток с током в пространстве между полюсами магнитов. Крутящий момент , действующий на виток с током, будет прямо пропорционален площади витка и величине тока, проходящего по витку, что следует из опытов. Получается, что отношение момента сил, действующих на виток, к произведению площади витка на величину тока остается величиной постоянной для данной пары магнитов .

Следовательно, величина, равная этому отношению, характеризует не виток с током, а силовые свойства той области пространства, где действует магнитное поле на виток с током.

Эта величина называется магнитной индукцией . Очевидно, это векторная величина. Вектор магнитной индукции является касательной к каждой точке магнитных линий (рис. 7).

Рис. 7. Вектор магнитной индукции

Размерность этой величины: – Ньютон делить на ампер, умноженный на метр. Её название – Тесла.

Вектор магнитной индукции – это силовая характеристика магнитного поля . Направление вектора магнитной индукции совпадает с направлением северного полюса свободной магнитной стрелки в данной точке пространства. Виток с током ведет себя в магнитном поле подобно стрелке, следовательно, у самого витка с током есть свое магнитное поле. Направление вектора магнитной индукции вдоль оси витка можно определить по правилу правой руки.

Если четырьмя пальцами правой руки обхватить виток так, чтобы пальцы указывали направление тока в витке, то отставленный на 90 градусов большой палец укажет направление вектора магнитной индукции.

Величина вектора магнитной индукции в центре витка с током будет определяться исключительно величиной тока и размерами самого витка

В заключение рассмотрим систему из нескольких витков – катушку, или, как еще ее называют, соленоид (рис. 8).

Рис. 8. Соленоид

Примечательно то, что внутри соленоида магнитные линии будут параллельными и прямыми линиями. Значит, магнитные линии будут совпадать с вектором магнитной индукции. При этом значение модуля вектора магнитной индукции внутри соленоида будет одинаковым. Такое поле, как мы помним из электростатики, называется однородным. Таким образом, внутри катушки с током, или, как говорят, соленоида, магнитное поле однородно.

Модуль вектора магнитной индукции будет зависеть не только от величины тока, но и от числа витков и длины соленоида .

Все элементы (dl) кругового тока создают в центре круга индукцию (dB);

откуда (61)

(62)

Закон Ампера устанавливает силу, действующую на проводник с током (модуль силы) в магнитном поле:

Направление силы Ампера определяется с помощью правила левой руки.

Взаимодействие двух проводников. Рассмотрим взаимодействие двух бесконечных прямолинейных параллельных проводников с токами и , находящихся на расстоянии R.

Используя закон Ампера (63) и формулу для магнитной индукции (60), учитывая, что для силы взаимодействия двух токов получим

(64)

Сила Лоренца – сила, действующая на заряд, движущийся в магнитном поле:

(65) или (66)

Направление силы определяется с помощью правила левой руки (на положительный заряд).

Радиус вращения r найдем из равенства

(67)

Период обращения:

(68), отсюда (69) т.е. период движения частиц не зависит от их скорости. Это используется в ускорителях элементарных частиц – циклотронах.

Ускорители делятся на: линейные, циклические и индукционные. Для ускорения релятивистских частиц используют: фазотрон – увеличивается частота переменного электрического поля, синхротрон – увеличивается магнитное поле, синхрофазотрон – увеличивается частота и магнитное поле.

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная

(70)

(71) где - проекция вектора на направление нормали ,

α – угол между и

Cуммарное значение потока:

. (72)

Рассмотрим в качестве примера магнитное поле бесконечного прямолинейного проводника с током I , находящегося в вакууме. Циркуляция вектора вдоль произвольной линии магнитной индукции – окружности радиуса r:
Т.к. во всех точках линии индукции равен по модулю и направлен по касательной к линии, так что , следовательно:
Т.е. циркуляция вектора магнитной индукции в вакууме одинакова вдоль всех линий магнитной индукции и равна произведению магнитной постоянной на силу тока. Таков вывод справедлив для любого произвольного замкнутого контура, если внутри его протекает ток. Если контур не охватывает ток, то циркуляция вектора вдоль этого контура равна 0. Если токов много, то берется алгебраическая сумма токов.

Теорема: Циркуляция магнитной индукции поля в вакууме вдоль произвольного замкнутого контура L равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром. Этот закон можно также записать:

(73)

Лекция 9

3.2.(2часа) Магнитные свойства вещества. Молекулярные токи. Диа -, пара – и ферромагнетики. Вектор намагниченности. Магнитная восприимчивость и магнитная проницаемость. Представление о ядерном магнитном резонансе и электронном парамагнитном резонансе.

Магнитные моменты электронов и атомов. Все вещества, помещенные в магнитное поле, намагничиваются. С точки зрения строения атомов, электрон, движущийся по круговой орбите обладает орбитальным магнитным моментом:

(74) его модуль

(75) где - сила тока,

Частота вращения,

S – площадь орбиты.

Направление вектора определяется правилом буравчика. Электрон, движущийся по орбите, обладает также механическим моментом импульса , модуль которого

- орбитальный механический момент электрона. (76) где ,

.

Направления и противоположные, т.к. заряд электрона отрицательный. Из (75) и (76) получим

(77) где - гиромагнитное отношение. (78)

Формула справедлива и для некруговых орбит. Экспериментально величину g определили Эйнштейн и де Гааз (1915). Оно оказалось равным , т.е в два раза большим, чем (78). Тогда было предположено, а в последствии доказано, что кроме орбитальных моментов электрон обладает собственным механическим моментом импульса , называемым спином. Спину электрона соответствует собственный (спиновый) магнитный момент : . Величина называется гиромагнитным отношением спиновых моментов. Проекция собственного магнитного момента на направление вектора может принимать только одно из следующих двух значений ±еħ/2m= , где ħ= , h – постоянная Планка, - магнетон Бора, являющийся единицей магнитного момента электрона. Общий магнитный момент атома (молекулы) равен векторной сумме магнитных моментов (орбитальных и спиновых) электронов: .

Диа – и парамагнетизм. Всякое вещество является магнетиком , т.е. оно способно под действием магнитного поля приобретать магнитный момент, т.е. намагничиваться.

Если орбита электрона ориентирована относительно вектора внешнего поля произвольным образом, составляя с ним ےα, то орбита и вектор придут во вращение, которое называется прецессией (движение волчка). Прецессионное движение эквивалентно току. Наведенные составляющие магнитных полей атомов складываются и образуют собственное магнитное поле вещества, которое накладывается на внешнее магнитное поле и внутри магнетика образуется результирующее магнитное поле.

Диамагнетики – это такие вещества, в которых уменьшается магнитное поле. Для них магнитная проницаемость немного меньше 1 составляет μ ≈ 0,999935. (Объясняется действием правила Ленца). Диамагнетизм свойственен всем веществам.

Парамагнетики – вещества, в которых увеличивается магнитное поле при действии внешнего поля, для них μ больше 1, например, μ ≈ 1,00047. К парамагнетикам относятся редкоземельные элементы: Pt, Al, CuSO 4 и т.д. Объясняется ориентацией орбитальных и спиновых магнитных моментов атомов в магнитном поле. При прекращении действия внешнего магнитного поля ориентация разрушается тепловым движением атомов и парамагнетик размагничивается. Магнитная проницаемость парамагнетиков превышает таковую для диамагнетиков.

Для количественного описания намагничивания магнетиков вводят векторную величину – намагниченность , определяемую магнитным моментом единицы объема магнетика:

(79) где - магнитный момент магнетика, представляющий собой векторную сумму магнитных моментов отдельных молекул. Вектор результирующего магнитного поля в магнетике равен векторной сумме магнитных индукций внешнего поля и поля микротоков (молекулярных токов) : , отсюда В несильных полях намагниченность пропорциональна напряженности поля, вызывающего намагничивание, т.е. , где χ –магнитная восприимчивость вещества. Для диамагнетиков она отрицательна, для парамагнетиков – положительна. Из вышеприведенных формул: Здесь , используя эту формулу придем к известной формуле

Явление электронного парамагнитного резонанса было открыто в Казани в 1945 году ученым Е.К.Завойским, сотрудником Казанского университета. Сущность явления заключается в резонансном поглощении высокочастотного электромагнитного поля при его воздействии на парамагнитное вещество, которое находится в постоянном магнитном поле. При этом частота Ларморовой процессии спинов электронов совпадает с частотой внешнего электромагнитного поля и электрон поглощает эту энергию.

Магнитные моменты ядер атомов значительно слабее магнитных моментов электронов, поэтому ядерный магнитный резонанс был открыт позже, чем электронный, 1949 году в США. Процесс аналогичен электронному, но получил более широкое применение для исследования веществ. Вершиной этого применения является создание ЯМР – томографов.

Ферромагнетики. К ним относятся: железо, кобальт, никель, гадолиний, их сплавы и соединения. μ>>1, составляет несколько тысяч.

I нас – магнитное насыщение.

При насыщении ориентируется все большее количество магнитных моментов.

Характерной особенностью ферромагнетиков является то, что для них зависимость I от Н (а следовательно В от Н) имеет вид петли, которая получила название петли гистерезиса: 0 – размагниченный; 1 – насыщение (); 2 – остаточная намагниченность (), постоянные магниты; 3 – размагничивание ( – коэрцитивная сила); дальше – повторяется.

Ферромагнетики с малой коэрцитивной силой называются 1)мягкими, а с большой коэрцитивной силой – 2)жесткими. Первые применяются для сердечников трансформаторов и электрических машин (двигателей и генераторов), вторые – для постоянных магнитов. Точка Кюри – температура, при которой ферромагнетик теряет магнитные свойства и превращается в парамагнетик. Процесс намагничивания ферромагнетиков сопровождается изменением их линейных размеров и объема. Это явление получило название магнитострикция. Ферромагнетики имеют доменную структуру: микроскопические объемы, в которых магнитные моменты ориентированы одинаково. В ненамагниченном состоянии магнитные моменты доменов направлены хаотично и результирующее поле равно нулю. При намагничивании ферромагнетика магнитные моменты доменов скачкообразно поворачиваются и устанавливаются вдоль поля и ферромагнетик намагничивается. Как только сориентируются все домены, так намагниченность достигает насыщения. При остаточной намагниченности () – ориентированы часть доменов.

Существуют антиферромагнетики (соединения MnO, MnF 2 , FeO, FeCl 2).

В последнее время большое значение приобрели ферриты – полупроводниковые ферромагнетики, химические соединения типа , где Ме – ион двухвалентного металла (Mn, Co, Ni, Cu, Zn, Cd, Fe). Они обладают заметными ферромагнитными свойствами и большим удельным электрическим сопротивлением (в миллионы раз больше чем у металлов). Нашли широкое применение в электротехнике и радиотехнике.

Цель работы : изучить свойства магнитного поля, ознакомиться с понятием магнитной индукции. Определить индукцию магнитного поля на оси кругового тока.

Теоретическое введение. Магнитное поле. Существование в природе магнитного поля проявляется в многочисленных явлениях, простейшими из которых являются взаимодействие движущихся зарядов (токов), тока и постоянного магнита, двух постоянных магнитов. Магнитное поле векторное . Это означает, что для его количественного описания в каждой точке пространства необходимо задать вектор магнитной индукции. Иногда эту величину называют просто магнитной индукцией . Направление вектора магнитной индукции совпадает с направлением магнитной стрелки, находящейся в рассматриваемой точке пространства и свободной от других воздействий.

Так как магнитное поле является силовым, то его изображают с помощью линий магнитной индукции – линий, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции в этих точках поля. Принято через единичную площадку, перпендикулярную , проводить количество линий магнитной индукции, равное величине магнитной индукции. Таким образом, густота линий соответствует величине В . Опыты показывают, что в природе отсутствуют магнитные заряды. Следствием этого является то, что линии магнитной индукции замкнуты. Магнитное поле называется однородным, если векторы индукции во всех точках этого поля одинаковы, то есть, равны по модулю и имеют одинаковые направления.

Для магнитного поля справедлив принцип суперпозиции : магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций полей, создаваемых каждым током или движущимся зарядом.

В однородном магнитном поле на прямолинейный проводник действует сила Ампера :

где – вектор, равный по модулю длине проводникаl и совпадающий с направлением тока I в этом проводнике.

Направление силы Ампера определяется правилом правого винта (векторы , и образуют правовинтовую систему): если винт с правой резьбой расположить перпендикулярно к плоскости, образуемой векторами и , и вращать его от к по наименьшему углу, то поступательное движение винта укажет направление силы .В скалярном виде соотношение (1) можно записать следующим образом:

F = I×l ×B ×sin a или (2).

Из последнего соотношения вытекает физический смысл магнитной индукции : магнитная индукция однородного поля численно равна силе, действующей на проводник с током 1 А, длиной 1 м, расположенный перпендикулярно направлению поля.

Единицей измерения магнитной индукции в СИ является Тесла (Тл) : .


Магнитное поле кругового тока. Электрический ток не только взаимодействуют с магнитным полем, но и создает его. Опыт показывает, что в вакууме элемент тока создает в точке пространства магнитное поле с индукцией

(3) ,

где – коэффициент пропорциональности, m 0 =4p×10 -7 Гн/м – магнитная постоянная, – вектор, численно равный длине элемента проводника и совпадающий по направлению с элементарным током, – радиус-вектор, проведенный от элемента проводника в рассматриваемую точку поля, r – модуль радиуса-вектора. Соотношение (3) было экспериментально установлено Био и Саваром, проанализировано Лапласом и поэтому называется законом Био-Савара-Лапласа . Согласно правилу правого винта, вектор магнитной индукции в рассматриваемой точке оказывается перпендикулярным элементу тока и радиус-вектору .

На основе закона Био-Савара-Лапласа и принципа суперпозиции проводится расчет магнитных полей электрических токов, текущих в проводниках произвольной конфигурации, путем интегрирования по всей длине проводника. Например, магнитная индукция магнитного поля в центре кругового витка радиусом R , по которому течет ток I , равна:

Линии магнитной индукции кругового и прямого токов показаны на рисунке 1. На оси кругового тока линия магнитной индукции является прямой. Направление магнитной индукции связано с направлением тока в контуре правилом правого винта . В применении к круговому току его можно сформулировать так: если винт с правой резьбой вращать по направлению кругового тока, то поступательное движение винта укажет направление линий магнитной индукции, касательные к которым в каждой точке совпадают с вектором магнитной индукции.