Матрицы и определители

1. 1 Матрицы. Понятия.

Прямоугольной матрицей размера m x n называется совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать матрицу в виде

или сокращенно в виде A = (a ij) (i = ; j = ). Числа a ij , составляющие данную матрицу, называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. Две матрицы A = (a ij) и B = (b ij) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если a ij = b ij .

Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. Матрица размера m x n , все элементы которой равны нулю, называются нулевой матрицей и обозначается через 0. Элементы матрицы с одинаковыми индексами называют элементами главной диагонали. Если число строк матрицы равно числу столбцов, то есть m = n , то матрицу называют квадратной порядка n . Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными матрицами и записываются так:

.

Если все элементы a ii диагональной матрицы равны 1, то матрица называется единичной и обозначается буквой Е:

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование матрицы, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Пусть дана матрица (4.1). Переставим строки со столбцами. Получим матрицу

A T = ,

которая будет транспонированной по отношению к матрице А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Основные операции над матрицами.

Основными арифметическими операциями над матрицами являются умножение матрицы на число, сложение и умножение матриц.



Перейдем к определению основных операций над матрицами.

Сложение матриц : Суммой двух матриц, например: A и B, имеющих одинаковое количество строк и столбцов, иными словами, одних и тех же порядков m и n называется матрица С = (Сij)(i = 1, 2, …m; j = 1, 2, …n) тех же порядков m и n, элементы Cij которой равны.

Cij = Aij + Bij (i = 1, 2, …, m; j = 1, 2, …, n) (1.2)

Для обозначения суммы двух матриц используется запись C = A + B. Операция составления суммы матриц называется их сложением

Итак по определению имеем:

+ =

=

Из определения суммы матриц, а точнее из формулы (1.2) непосредственно вытекает, что операция сложения матриц обладает теми же свойствами, что и операция сложения вещественных чисел, а именно:

1) переместительным свойством: A + B = B + A

2) сочетательным свойством: (A + B) + C = A + (B + C)

Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.

Умножение матрицы на число :

Произведением матрицы A = (Aij) (i = 1, 2, …, m; j = 1, 2, …, n) на вещественное число называется матрица C = (Cij) (i = 1, 2, … , m; j = 1, 2, …, n), элементы которой равны

Cij = Aij (i = 1, 2, …, m; j = 1, 2, …, n). (1.3)

Для обозначения произведения матрицы на число используется запись C = A или C = A . Операция составления произведения матрицы на число называется умножением матрицы на это число.

Непосредственно из формулы (1.3) ясно, что умножение матрицы на число обладает следующими свойствами:

1) распределительным свойством относительно суммы матриц:

(A + B) = A + B

2) сочетательным свойством относительно числового множителя:

3) распределительным свойством относительно суммы чисел:

( + ) A = A + A.

Замечание: Разностью двух матриц A и B одинаковых порядков естественно назвать такую матрицу C тех же порядков, которая в сумме с матрицей B дает матрицу A. Для обозначения разности двух матриц используется естественная запись: C = A – B.

Перемножение матриц :

Произведением матрицы A = (Aij) (i = 1, 2, …, m; j = 1, 2, …, n), имеющей порядки соответственно равные m и n, на матрицу B = (Bij) (i = 1, 2, …, n;

j = 1, 2, …, p), имеющую порядки соответственно равные n и p, называется матрица C = (Сij) (i = 1, 2, … , m; j = 1, 2, … , p), имеющая порядки, соответственно равные m и p, и элементы Cij, определяемые формулой

Cij = (i = 1, 2, …, m; j = 1, 2, …, p) (1.4)

Для обозначения произведения матрицы A на матрицу B используют запись

C = AB. Операция составления произведения матрицы A на матрицу B называется перемножением этих матриц. Из сформулированного выше определения вытекает, что матрицу A можно умножить не на всякую матрицу B: необходимо чтобы число столбцов матрицы A было равно числу строк матрицы B. Для того чтобы оба произведения AB и BA не только были определены, но и имели одинаковый порядок, необходимо и достаточно, чтобы обе матрицы A и B были квадратными матрицами одного и того же порядка.

Формула (1.4) представляет собой правило составления элементов матрицы C,

являющейся произведением матрицы A на матрицу B. Это правило можно сформулировать и словесно: Элемент Cij, стоящий на пересечении i-й строки и j-го столбца матрицы C = AB, равен сумме попарных произведений соответствующих элементов i-й строки матрицы A и j-го столбца матрицы B. В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка

Из формулы (1.4) вытекают следующие свойства произведения матрицы A на матрицу B:

1) сочетательное свойство: (AB) C = A (BC);

2) распределительное относительно суммы матриц свойство:

(A + B) C = AC + BC или A (B + C) = AB + AC.

Вопрос о перестановочном свойстве произведения матриц имеет смысл ставить лишь для квадратных матриц одинакового порядка. Элементарные примеры показывают, что произведений двух квадратных матриц одинакового порядка не обладает, вообще говоря, перестановочным свойством. В самом деле, если положить

A = , B = , то AB = , а BA =

Те же матрицы, для произведения которых справедливо перестанавочное свойство, принято называть коммутирующими.

Среди квадратных матриц выделим класс так называемых диагональных матриц, у каждой из которых элементы, расположенные вне главной диагонали, равны нулю. Среди всех диагональных матриц с совпадающими элементами на главной диагонали особо важную роль играют две матрицы. Первая из этих матриц получается, когда все элементы главной диагонали равны единице, называется единичной матрицей n-ого порядка и обозначается символом E . Вторая матрица получается при всех элементах равных нулю и называется нулевой матрицей n-ого порядка и обозначается символом O. Допустим, что существует произвольная матрица A, тогда

AE = EA = A, AO = OA = O.

Первая из формул характеризует особую роль единичной матрицы Е, аналогичную то роли, которую играет число 1 при перемножении вещественных чисел. Что же касается особой роли нулевой матрицы О, то ее выявляет не только вторая из формул, но и элементарно проверяемое равенство: A + O = O + A = A. Понятие нулевой матрицы можно вводить и не для квадратных матриц.

Ранг матрицы

Рассмотрим прямоугольную матрицу (4.1). Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k -го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n . Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r , то это означает, что в матрице А имеется отличный от нуля минор порядка r , но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

0 ≤ r(A) ≤ min (m,n).

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так:

Канонической матрицей называется матрица, у которой в начале

главной диагонали стоят подряд несколько единиц (число которых

может равняться нулю), а все остальные элементы равны нулю,

например, .

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Обратная матрица

Рассмотрим квадратную матрицу

A = .

Обозначим Δ = det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через А -1 . Обратная матрица вычисляется по формуле

А -1 = 1/Δ , (4.5)

где А ij - алгебраические дополнения элементов a ij .

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

2. Определители

Для каждой квадратной матрицы определено число, называемое определителем матрицы, детерминантом матрицы или просто определителем (детерминантом).

Определение. Определителем квадратной матрицы первого порядка называется число, равное единственному элементу этой матрицы: A={a}, detA=|A|=a.

Пусть A - произвольная квадратная матрица порядка n, n>1:

Определение Определителем n-го порядка (определителем квадратной матрицы n-го порядка n), n>1, называется число, равное

где - определитель квадратной матрицы полученной из матрицы A вычеркиванием превой строки и j-го столбца.

Для определителей 2-го и 3-го порядка легко получить простые выражения через элементы матрицы.

Определитель 2-го порядка:

Определитель 3-го порядка:

.

2.1. Минор и алгебраическое дополнение элемента

Определение. Минором элемента матрицы называется определитель матрицы, полученной вычеркиванием строки и столбца, в которых расположен элемент. Обозначаем: минор элемента a ij - .

Определение. Алгебраическим дополнением элемента матрицы называется его минор, умноженный на -1 в степени, равной сумме номеров строки и столбца, в которых расположен элемент. Обозначаем: алгебраическое дополнение элемента a ij - .

Таким образом можно переформулировать определение определителя n-го порядка:

определитель n-го порядка, n>1, равен сумме произведений элементов первой строки на их алгебраические дополнения.

Пример.


Теорема о вычислении определителя разложением по любой строке

Теорема. Определитель n-го порядка, n>1, равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Пример. Вычислим определитель из предыдущего примера разложением по второй строке:

Следствие. Определитель треугольной матрицы равен произведению диагональных элементов. (Доказать самостоятельно).

Назначение сервиса . Матричный калькулятор предназначен для решения матричных выражений, например, таких как, 3A-CB 2 или A -1 +B T .

Инструкция . Для онлайн решения необходимо задать матричное выражение. На втором этапе необходимо будет уточнить размерность матриц.

Действия над матрицами

Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).

Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).
Для выполнения списка операций используйте разделитель точка с запятой (;). Например, для выполнения трех операций:
а) 3А+4В
б) АВ-ВА
в) (А-В) -1
необходимо будет записать так: 3*A+4*B;A*B-B*A;(A-B)^(-1)

Матрица - прямоугольная числовая таблица, имеющая m строк и n столбцов, поэтому схематически матрицу можно изображать в виде прямоугольника.
Нулевой матрицей (нуль-матрицей) называют матрицу, все элементы которой равны нулю и обозначают 0.
Единичной матрицей называется квадратная матрица вида


Две матрицы A и B равны , если они одинакового размера и их соответствующие элементы равны.
Вырожденной матрицей называется матрица, определитель которой равен нулю (Δ = 0).

Определим основные операции над матрицами .

Сложение матриц

Определение . Суммой двух матриц и одинакового размера называется матрица тех же размеров, элементы которой находятся по формуле . Обозначается C = A+B.

Пример 6 . .
Операция сложения матриц распространяется на случай любого числа слагаемых. Очевидно, что A+0=A .
Еще раз подчеркнем, что складывать можно только матрицы одинакового размера; для матриц разных размеров операция сложения не определена.

Вычитание матриц

Определение . Разностью B-A матриц B и A одинакового размера называется такая матрица C, что A+ C = B.

Умножение матриц

Определение . Произведением матрицы на число α называется матрица , получающаяся из A умножением всех ее элементов на α, .
Определение . Пусть даны две матрицы и , причем число столбцов A равно числу строк B. Произведением A на B называется матрица , элементы которой находятся по формуле .
Обозначается C = A·B.
Схематически операцию умножения матриц можно изобразить так:

а правило вычисления элемента в произведении:

Подчеркнем еще раз, что произведение A·B имеет смысл тогда и только тогда, когда число столбцов первого сомножителя равно числу строк второго, при этом в произведении получается матрица, число строк которой равно числу строк первого сомножителя, а число столбцов равно числу столбцов второго. Проверить результат умножения можно через специальный онлайн-калькулятор .

Пример 7 . Даны матрицы и . Найти матрицы C = A·B и D = B·A.
Решение. Прежде всего заметим, что произведение A·B существует, так как число столбцов A равно числу строк B.


Заметим, что в общем случае A·B≠B·A , т.е. произведение матриц антикоммутативно.
Найдем B·A (умножение возможно).

Пример 8 . Дана матрица . Найти 3A 2 – 2A.
Решение.

.
; .
.
Отметим следующий любопытный факт.
Как известно, произведение двух отличных от нуля чисел не равно нулю. Для матриц подобное обстоятельство может и не иметь места, то есть произведение ненулевых матриц может оказаться равным нуль-матрице.

Сложение матриц:

Вычитание и сложение матриц сводится к соответствующим операциям над их элементами. Операция сложения матриц вводится только для матриц одинакового размера, т. е. для матриц , у которых число строк и столбцов соответственно равно. Суммой матриц А и В, называется матрица С, элементы которой равны сумме соответствующих элементов. С = А + В c ij = a ij + b ij Аналогично определяется разность матриц .

Умножение матрицы на число:

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число. Произведением матрицы А на число k называется матрица В, такая что

b ij = k × a ij . В = k × A b ij = k × a ij . Матрица - А = (-1) × А называется противоположной матрице А.

Свойства сложения матриц и умножения матрицы на число:

Операции сложения матриц и умножения матрицы на число обладают следующими свойствами: 1. А + В = В + А; 2. А + (В + С) = (А + В) + С; 3. А + 0 = А; 4. А - А = 0; 5. 1 × А = А; 6. α × (А + В) = αА + αВ; 7. (α + β) × А = αА + βА; 8. α × (βА) = (αβ) × А; , где А, В и С - матрицы, α и β - числа.

Умножение матриц (Произведение матриц):

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы . Произведением матрицы А m×n на матрицу В n×p , называется матрица С m×p такая, что с ik = a i1 × b 1k + a i2 × b 2k + ... + a in × b nk , т. е. находиться сумма произведений элементов i - ой строки матрицы А на соответствующие элементы j - ого столбца матрицы В. Если матрицы А и В квадратные одного размера, то произведения АВ и ВА всегда существуют. Легко показать, что А × Е = Е × А = А, где А квадратная матрица , Е - единичная матрица того же размера.

Свойства умножения матриц:

Умножение матриц не коммутативно, т.е. АВ ≠ ВА даже если определены оба произведения. Однако, если для каких - либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными. Самым характерным примером может служить единичная матрица , которая является перестановочной с любой другой матрицей того же размера. Перестановочными могут быть только квадратные матрицы одного и того же порядка. А × Е = Е × А = А

Умножение матриц обладает следующими свойствами: 1. А × (В × С) = (А × В) × С; 2. А × (В + С) = АВ + АС; 3. (А + В) × С = АС + ВС; 4. α × (АВ) = (αА) × В; 5. А × 0 = 0; 0 × А = 0; 6. (АВ) Т = В Т А Т; 7. (АВС) Т = С Т В Т А Т; 8. (А + В) Т = А Т + В Т;

2. Определители 2-го и 3-го порядков. Свойства определителей.

Определителем матрицы второго порядка, или определителем второго порядка, называется число, которое вычисляется по формуле:

Определителем матрицы третьего порядка, или определителем третьего порядка, называется число, которое вычисляется по формуле:

Это число представляет алгебраическую сумму, состоящую из шести слагаемых. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы . Каждое слагаемое состоит из произведения трех сомножителей.

Знаки, с которыми члены определителя матрицы входят в формулу нахождения определителя матрицы третьего порядка можно определить, пользуясь приведенной схемой, которая называется правилом треугольников или правилом Сарруса. Первые три слагаемые берутся со знаком плюс и определяются из левого рисунка, а последующие три слагаемые берутся со знаком минус и определяются из правого рисунка.

Определить количество слагаемых, для нахождения определителя матрицы , в алгебраической сумме, можно вычислив факториал: 2! = 1 × 2 = 2 3! = 1 × 2 × 3 = 6

Свойства определителей матриц

Свойства определителей матриц:

Свойство № 1:

Определитель матрицы не изменится, если его строки заменить столбцами, причем каждую строку столбцом с тем же номером, и наоборот (Транспонирование). |А| = |А| Т

Следствие:

Столбцы и строки определителя матрицы равноправны, следовательно, свойства присущие строкам выполняются и для столбцов.

Свойство № 2:

При перестановке 2-х строк или столбцов определитель матрицы изменит знак на противоположный, сохраняя абсолютную величину, т.е.:

Свойство № 3:

Определитель матрицы , имеющий два одинаковых ряда, равен нулю.

Свойство № 4:

Общий множитель элементов какого-либо ряда определителя матрицы можно вынести за знак определителя .

Следствия из свойств № 3 и № 4:

Если все элементы некоторого ряда (строки или столбца) пропорциональны соответствующим элементам параллельного ряда, то такой определитель матрицы равен нулю.

Свойство № 5:

определителя матрицы равны нулю, то сам определитель матрицы равен нулю.

Свойство № 6:

Если все элементы какой–либо строки или столбца определителя представлены в виде суммы 2-х слагаемых, то определитель матрицы можно представить в виде суммы 2-х определителей по формуле:

Свойство № 7:

Если к какой–либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель матрицы не изменит своей величины.

Пример применения свойств для вычисления определителя матрицы :

Определение. Матрицей называется множество чисел, которое составляет прямоугольную таблицу, состоящее изmстрок иnстолбцов

коротко матрицу обозначают так:

где элементы данной матрицы,i– номер строки,j– номер столбца.

Если в матрице число строк равно числу столбцов (m = n ), то матрица называетсяквадратной n -го порядка, а в противном случае –прямоугольной.

Если m = 1 и n > 1, то получаем однострочную матрицу

которая называется вектор-строкой , если, жеm >1 иn =1, то получаем одностолбцовую матрицу

которая называется вектор-столбцом .

Квадратная матрица, у которой все элементы, кроме элементов главной диагонали, равны нулю, называется диагональной.

Диагональная матрица, у которой элементы главной диагонали равны единице, называется единично, обозначаетсяE .

Матрица, полученная из данной заменой ее строки столбцом с тем же номером, называется транспонированной к данной. Обозначается.

Две матрицы иравны, если равны между собой элементы, стоящие на одинаковых местах, то есть если

при всех i иj (при этом число строк (столбцов) матрицA иB должно быть одинаковым).

1°. Суммой двух матрицA =(a ij ) иB =(b ij ) с одинаковым количествомm строк иn столбцов называется матрицаC =(c ij ), элементы которой определяются равенством

Сумму матриц обозначают C =A +B .

Пример.

2 0 . Произведением матрицыA =(a ij ) на числоλ называется матрица, у которой каждый элемент равен произведению соответствующего элемента матрицыA на числоλ :

λA =λ (a ij )=(λa ij ), (i =1,2…,m ; j =1,2…,n).

Пример.

3 0 . Произведением матрицыA =(a ij ), имеющейm строк иk столбцов, на матрицуB =(b ij ), имеющейk строк иn столбцов, называется матрицаC =(c ij ), имеющаяm строк иn столбцов, у которой элементc ij равен сумме произведений элементовi -ой строки матрицыA иj -го столбца матрицыB , то есть

При этом число столбцов матрицы A должно быть равно числу строк матрицыB . В противном случае произведение не определено. Произведение матриц обозначается A*B =C.

Пример.

Для произведения матриц не выполняется равенство между матрицами A * B иB * A , в общем случае одна из них может быть не определена.

Умножение квадратной матрицы любого порядка на соответствующую единичную матрицу не меняет матрицу.

Пример. Пусть,, тогда согласно правилу умножения матриц имеем

,

откуда заключаем, что

Определители и их свойства.

Пусть дана квадратная матрица третьего порядка:

Определение. Определителем третьего порядка, соответствующим матрице (1), называется число, обозначаемое символом

и определяемое равенством

Чтобы запомнить, какие произведения в правой части равенства (2) берутся со знаком "+", а какие со знаком "-", полезно использовать следующее правило треугольников.

Пример.

Сформулируем основные свойства для определителей третьего порядка, хотя они присущи определителям любого порядка.

1. Величина определителя не изменится, если его строки и столбцы поменять местами, т. е.

2. Перестановка двух столбцов или двух строк определителя равносильна умножению его на -1.

3. Если определитель имеет два одинаковых столбца или две одинаковые строки, то он равен нулю.

4. Умножение всех элементов одного столбца или одной строки определителя на любое числоλ равносильно умножению определителя на это числоλ .

5. Если все элементы некоторого столбца или некоторой строки определителя равны нулю, то и сам определитель равен нулю.

6. Если элементы двух столбцов или двух строк определителя пропорциональны, то определитель равен нулю.

7. Если каждый элементn -го столбца (n -ой строки) определителя представляет собой сумму двух слагаемых, то определитель может быть представлен в виде суммы двух определителей, из которых один вn -ом столбце (n -ой строке) содержит первые из упомянутых слагаемых, а другой - вторые; элементы, стоящие на остальных местах, у всех трех определителей одни и те же.

Например,

8 0 . Если к элементам некоторого столбца (строки) определителя прибавить соответствующие элементы другого столбца (строки), умноженные на любой общий множитель, то величина определителя не изменится.

Например,

Минором некоторого элемента определителя называется определитель, получаемый из данного определителя вычеркиванием строки и столбца, на пересечении которых расположен этот элемент.

Например, минором элемента а 1 определителяΔ является определитель 2-го порядка

Алгебраическим дополнением некоторого элемента определителя называется минор этого элемента, умноженный на (-1) p , гдер - сумма номеров строки и столбца, на пересечении которых расположен этот элемент.

Если, например, элемент а 2 находятся на пересечении 1-го столбца и 2-ой строки, то для негор =1+2=3 и алгебраическим дополнением является

9 0 . Определитель равен сумме произведений элементов какого–либо столбца или строки на их алгебраические дополнения.

10 0 . Сумма произведений элементов какого–либо столбца или какой–либо строки определителя на алгебраические дополнения соответствующих элементов другого столбца или другой строки равны нулю.

Возникает вопрос, можно ли для квадратной матрицы А подобрать некоторую матрицу, такую что умножив на нее матрицу А в результате получить единичную матрицу Е , такую матрицу называют обратной к матрице А.

Определение. Матрицаназывается обратной квадратной матрицеA, если.

Определение. Квадратная матрица называется невырожденной, если ее определитель отличен от нуля. В противном случае квадратная матрица называется вырожденной.

Всякая невырожденная матрица имеет обратную.

Элементарными преобразованиями матриц являются:

    перестановка местами двух параллельных рядов матрицы;

    умножение всех элементов матрицы на число, отличное от нуля;

    прибавление ко всем элементами ряда матрицы соответствующих элементов параллельного ряда, умноженных на одно и то же число.

Матрица В , полученная из матрицыА с помощью элементарных преобразований, называетсяэквивалентной матрицей.

Для невырожденной квадратной матрицы

третьего порядка обратная матрица А -1 может быть вычислена по следующей формуле

здесь Δ - определитель матрицы А ,A ij – алгебраические дополнения элементовa ij матрицыА.

Элемент строки матрицы называется крайним , если он отличен от нуля, а все элементы строки, находящиеся левее него, равны нулю. Матрица называетсяступенчатой , если крайний элемент каждой строки находится правее крайнего элемента предыдущей строки. Например:

Не ступенчатая; - ступенчатая.

Решение матриц – понятие обобщающее операции над матрицами. Под математической матрицей понимается таблица элементов. О подобной таблице, в которой m строк и n столбцов, говорят что это матрица размером m на n.
Общий вид матрицы

Основные элементы матрицы:
Главная диагональ . Её составляют элементы а 11 ,а 22 …..а mn
Побочная диагональ. Её слагают элементы а 1n ,а 2n-1 …..а m1 .
Перед тем как перейти к решению матриц рассмотрим основные виды матриц:
Квадратная – в которой число строк равно числу столбцов (m=n)
Нулевая – все элементы этой матрицы равны 0.
Транспонированная матрица - матрица В, полученная из исходной матрицы A заменой строк на столбцы.
Единичная – все элементы главной диагонали равны 1, все остальные 0.
Обратная матрица - матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.
Матрица может быть симметричной относительно главной и побочной диагонали. То есть, если а 12 =а 21 , а 13 =а 31 ,….а 23 =а 32 …. а m-1n =а mn-1 . то матрица симметрична относительно главной диагонали. Симметричными бывают только квадратные матрицы.
Теперь перейдем непосредственно к вопросу, как решать матрицы.

Сложение матриц.

Матрицы можно алгебраически складывать, если они обладают одинаковой размерностью. Чтобы сложить матрицу А с матрицей В, необходимо элемент первой строки первого столбца матрицы А сложить с первым элементом первой строки матрицы В, элемент второго столбца первой строки матрицы А сложить с элементом элемент второго столбца первой строки матрицы В и т.д.
Свойства сложения
А+В=В+А
(А+В)+С=А+(В+С)

Умножение матриц .

Матрицы можно перемножать, если они согласованы. Матрицы А и В считаются согласованными, если количество столбцов матрицы А равно количеству строк матрицы В.
Если А размерностью m на n, B размерностью n на к, то матрица С=А*В будет размерностью m на к и будет составлена из элементов

Где С 11 – сумма папарных произведений элементов строки матрицы А и столбца матрицы В, то есть элемента сумма произведения элемента первого столбца первой строки матрицы А с элементом первого столбца первой строки матрицы В, элемента второго столбца первой строки матрицы А с элементом первого столбца второй строки матрицы В и т.д.
При перемножении важен порядок перемножения. А*В не равно В*А.

Нахождение определителя.

Любая квадратная матрица может породить определитель или детерминант. Записывает det. Или | элементы матрицы |
Для матриц размерностью 2 на 2. Определить есть разница между произведением элементов главной и элементами побочной диагонали.

Для матриц размерностью 3 на 3 и более. Операция нахождения определителя сложнее.
Введем понятия:
Минор элемента – есть определитель матрицы, полученной из исходной матрицы, путем вычеркивания строки и столбца исходной матрицы, в которой этот элемент находился.
Алгебраическим дополнением элемента матрицы называется произведение минора этого элемента на -1 в степени суммы строки и столбца исходной матрицы, в которой этот элемент находился.
Определитель любой квадратной матрицы равен сумме произведения элементов любого ряда матрицы на соответствующие им алгебраические дополнения.

Обращение матрицы

Обращение матрицы - это процесс нахождения обратной матрицы, определение которой мы дали в начале. Обозначается обратная матрица также как исходная с припиской степени -1.
Находиться обратная матрица по формуле.
А -1 = A * T x (1/|A|)
Где A * T - Транспонированная матрица Алгебраических дополнений.

Примеры решения матриц мы сделали в виде видеоурока

:

Если хотите разобраться, смотрите обязательно.

Это основные операции по решению матриц. Если появится дополнительные вопросы о том, как решить матрицы , пишите смело в комментариях.

Если все же вы не смогли разобраться, попробуйте обратиться к специалисту.