Математика является символом мудрости науки ,

образцом научной строгости и простоты ,

эталоном совершенства и красоты в науке.

Российский философ, профессор А.В. Волошинов

Неравенства с модулем

Наиболее сложно решаемыми задачами школьной математики являются неравенства , содержащие переменные под знаком модуля. Для успешного решения таких неравенств необходимо хорошо знать свойства модуля и иметь навыки их использования.

Основные понятия и свойства

Модуль (абсолютная величина) действительного числа обозначается и определяется следующим образом:

К простым свойствам модуля относятся следующие соотношения:

И .

Отметим , что последние два свойства справедливы для любой четной степени.

Кроме того , если , где , то и

Более сложные свойства модуля , которые можно эффективно использовать при решении уравнений и неравенств с модулями , формулируются посредством следующих теорем:

Теорема 1. Для любых аналитических функций и справедливо неравенство .

Теорема 2. Равенство равносильно неравенству .

Теорема 3. Равенство равносильно неравенству .

Наиболее распространенными в школьной математике неравенствами , содержащие неизвестные переменные под знаком модуля , являются неравенства вида и , где некоторая положительная константа.

Теорема 4. Неравенство равносильно двойному неравенству , а решение неравенства сводится к решению совокупности неравенств и .

Данная теорема является частным случаем теорем 6 и 7.

Более сложными неравенствами , содержащие модуль, являются неравенства вида , и .

Методы решения таких неравенств можно сформулировать посредством следующих трех теорем.

Теорема 5. Неравенство равносильно совокупности двух систем неравенств

И (1)

Доказательство. Так как , то

Отсюда вытекает справедливость (1).

Теорема 6. Неравенство равносильно системе неравенств

Доказательство. Так как , то из неравенства следует , что . При таком условии неравенство и при этом вторая система неравенств (1) окажется несовместной.

Теорема доказана.

Теорема 7. Неравенство равносильно совокупности одного неравенства и двух систем неравенств

И (3)

Доказательство. Поскольку , то неравенство всегда выполняется , если .

Пусть , тогда неравенство будет равносильно неравенству , из которого вытекает совокупность двух неравенств и .

Теорема доказана.

Рассмотрим типовые примеры решения задач на тему «Неравенства , содержащие переменные под знаком модуля».

Решение неравенств с модулем

Наиболее простым методом решения неравенств с модулем является метод , основанный на раскрытии модулей. Этот метод является универсальным , однако в общем случае его применение может привести к весьма громоздким вычислениям. Поэтому учащиеся должны знать и другие (более эффективные) методы и приемы решения таких неравенств. В частности , необходимо иметь навыки применения теорем , приведенных в настоящей статье.

Пример 1. Решить неравенство

. (4)

Решение. Неравенство (4) будем решать «классическим» методом – методом раскрытия модулей. С этой целью разобьем числовую ось точками и на интервалы и рассмотрим три случая.

1. Если , то , , , и неравенство (4) принимает вид или .

Так как здесь рассматривается случай , то является решением неравенства (4).

2. Если , то из неравенства (4) получаем или . Так как пересечение интервалов и является пустым , то на рассматриваемом интервале решений неравенства (4) нет.

3. Если , то неравенство (4) принимает вид или . Очевидно , что также является решением неравенства (4).

Ответ: , .

Пример 2. Решить неравенство .

Решение. Положим , что . Так как , то заданное неравенство принимает вид или . Поскольку , то и отсюда следует или .

Однако , поэтому или .

Пример 3. Решить неравенство

. (5)

Решение. Так как , то неравенство (5) равносильно неравенствам или . Отсюда , согласно теореме 4 , имеем совокупность неравенств и .

Ответ: , .

Пример 4. Решить неравенство

. (6)

Решение. Обозначим . Тогда из неравенства (6) получаем неравенства , , или .

Отсюда , используя метод интервалов , получаем . Так как , то здесь имеем систему неравенств

Решением первого неравенства системы (7) является объединение двух интервалов и , а решением второго неравенства – двойное неравенство . Отсюда следует , что решение системы неравенств (7) представляет собой объединение двух интервалов и .

Ответ: ,

Пример 5. Решить неравенство

. (8)

Решение. Преобразуем неравенство (8) следующим образом:

Или .

Применяя метод интервалов , получаем решение неравенства (8).

Ответ: .

Примечание. Если в условии теоремы 5 положить и , то получим .

Пример 6. Решить неравенство

. (9)

Решение. Из неравенства (9) следует . Преобразуем неравенство (9) следующим образом:

Или

Так как , то или .

Ответ: .

Пример 7. Решить неравенство

. (10)

Решение. Так как и , то или .

В этой связи и неравенство (10) принимает вид

Или

. (11)

Отсюда следует, что или . Так как , то и из неравенства (11) вытекает или .

Ответ: .

Примечание. Если к левой части неравенства (10) применить теорему 1 , то получим . Отсюда и из неравенства (10) следует , что или . Так как , то неравенство (10) принимает вид или .

Пример 8. Решить неравенство

. (12)

Решение. Так как , то и из неравенства (12) следует или . Однако , поэтому или . Отсюда получаем или .

Ответ: .

Пример 9. Решить неравенство

. (13)

Решение. Согласно теореме 7 решением неравенства (13) являются или .

Пусть теперь . В таком случае и неравенство (13) принимает вид или .

Если объединить интервалы и , то получим решение неравенства (13) вида .

Пример 10. Решить неравенство

. (14)

Решение. Перепишем неравенство (14) в равносильном виде: . Если к левой части данного неравенства применить теорему 1, то получим неравенство .

Отсюда и из теоремы 1 следует , что неравенство (14) выполняется для любых значений .

Ответ: любое число.

Пример 11. Решить неравенство

. (15)

Решение. Применяя теорему 1 к левой части неравенства (15) , получаем . Отсюда и из неравенства (15) вытекает уравнение , которое имеет вид .

Согласно теореме 3 , уравнение равносильно неравенству . Отсюда получаем .

Пример 12. Решить неравенство

. (16)

Решение . Из неравенства (16), согласно теореме 4, получаем систему неравенств

При решении неравенства воспользуемся теоремой 6 и получим систему неравенств из которой следует .

Рассмотрим неравенство . Согласно теореме 7 , получаем совокупность неравенств и . Второе неравенство совокупности справедливо для любого действительного .

Следовательно , решением неравенства (16) являются .

Пример 13. Решить неравенство

. (17)

Решение. Согласно теореме 1 можно записать

(18)

Принимая во внимание неравенство (17), делаем вывод о том, что оба неравенства (18) обращаются в равенства, т.е. имеет место система уравнений

По теореме 3 данная система уравнений равносильна системе неравенств

или

Пример 14. Решить неравенство

. (19)

Решение. Так как , то . Умножим обе части неравенства (19) на выражение , которое для любых значений принимает только положительные значения. Тогда получим неравенство, которое равносильно неравенству (19), вида

Отсюда получаем или , где . Так как и , то решением неравенства (19) являются и .

Ответ: , .

Для более глубокого изучения методов решения неравенств с модулем можно посоветовать обратиться к учебным пособиям , приведенных в списке рекомендованной литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование , 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: методы решения и доказательства неравенств. – М.: Ленанд / URSS , 2018. – 264 с.

3. Супрун В.П. Математика для старшеклассников: нестандартные методы решения задач. – М.: КД «Либроком» / URSS , 2017. – 296 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Этот математический калькулятор онлайн поможет вам решить уравнение или неравенство с модулями . Программа для решения уравнений и неравенств с модулями не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

|x| или abs(x) - модуль x

Введите уравнение или неравенство с модулями

Решить уравнение или неравенство

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Уравнения и неравенства с модулями

В курсе алгебры основной школы могут встретится простейшие уравнения и неравенства с модулями. Для их решения можно применять геометрический метод, основанный на том, что \(|x-a| \) - это расстояние на числовой прямой между точками x и a: \(|x-a| = \rho (x;\; a) \). Например, для решения уравнения \(|x-3|=2 \) нужно найти на числовой прямой точки, удалённые от точки 3 на расстояние 2. Таких точек две: \(x_1=1 \) и \(x_2=5 \).

Решая неравенство \(|2x+7|

Но основной способ решения уравнений и неравенств с модулями связан с так называемым «раскрытием модуля по определению»:
если \(a \geq 0 \), то \(|a|=a \);
если \(a Как правило, уравнение (неравенство) с модулями сводится к совокупности уравнений (неравенств), не содержащих знак модуля.

Кроме указанного определения, используются следующие утверждения:
1) Если \(c > 0 \), то уравнение \(|f(x)|=c \) равносильно совокупности уравнений: \(\left[\begin{array}{l} f(x)=c \\ f(x)=-c \end{array}\right. \)
2) Если \(c > 0 \), то неравенство \(|f(x)| 3) Если \(c \geq 0 \), то неравенство \(|f(x)| > c \) равносильно совокупности неравенств: \(\left[\begin{array}{l} f(x) c \end{array}\right. \)
4) Если обе части неравенства \(f(x) ПРИМЕР 1. Решить уравнение \(x^2 +2|x-1| -6 = 0 \).

Если \(x-1 \geq 0 \), то \(|x-1| = x-1 \) и заданное уравнение принимает вид
\(x^2 +2(x-1) -6 = 0 \Rightarrow x^2 +2x -8 = 0 \).
Если же \(x-1 \(x^2 -2(x-1) -6 = 0 \Rightarrow x^2 -2x -4 = 0 \).
Таким образом, заданное уравнение следует рассмотреть по отдельности в каждом из двух указанных случаев.
1) Пусть \(x-1 \geq 0 \), т.е. \(x \geq 1 \). Из уравнения \(x^2 +2x -8 = 0 \) находим \(x_1=2, \; x_2=-4\). Условию \(x \geq 1 \) удовлетворяет лишь значение \(x_1=2\).
2) Пусть \(x-1 Ответ: \(2; \;\; 1-\sqrt{5} \)

ПРИМЕР 2. Решить уравнение \(|x^2-6x+7| = \frac{5x-9}{3} \).

Первый способ (раскрытие модуля по определению).
Рассуждая, как в примере 1, приходим к выводу, что заданное уравнение нужно рассмотреть по отдельности при выполнении двух условий: \(x^2-6x+7 \geq 0 \) или \(x^2-6x+7

1) Если \(x^2-6x+7 \geq 0 \), то \(|x^2-6x+7| = x^2-6x+7 \) и заданное уравнение принимает вид \(x^2-6x+7 = \frac{5x-9}{3} \Rightarrow 3x^2-23x+30=0 \). Решив это квадратное уравнение, получим: \(x_1=6, \; x_2=\frac{5}{3} \).
Выясним, удовлетворяет ли значение \(x_1=6 \) условию \(x^2-6x+7 \geq 0 \). Для этого подставим указанное значение в квадратное неравенство. Получим: \(6^2-6 \cdot 6+7 \geq 0 \), т.е. \(7 \geq 0 \) - верное неравенство. Значит, \(x_1=6 \) - корень заданного уравнения.
Выясним, удовлетворяет ли значение \(x_2=\frac{5}{3} \) условию \(x^2-6x+7 \geq 0 \). Для этого подставим указанное значение в квадратное неравенство. Получим: \(\left(\frac{5}{3} \right)^2 -\frac{5}{3} \cdot 6 + 7 \geq 0 \), т.е. \(\frac{25}{9} -3 \geq 0 \) - неверное неравенство. Значит, \(x_2=\frac{5}{3} \) не является корнем заданного уравнения.

2) Если \(x^2-6x+7 Значение \(x_3=3\) удовлетворяет условию \(x^2-6x+7 Значение \(x_4=\frac{4}{3} \) не удовлетворяет условию \(x^2-6x+7 Итак, заданное уравнение имеет два корня: \(x=6, \; x=3 \).

Второй способ. Если дано уравнение \(|f(x)| = h(x) \), то при \(h(x) \(\left[\begin{array}{l} x^2-6x+7 = \frac{5x-9}{3} \\ x^2-6x+7 = -\frac{5x-9}{3} \end{array}\right. \)
Оба эти уравнения решены выше (при первом способе решения заданного уравнения), их корни таковы: \(6,\; \frac{5}{3},\; 3,\; \frac{4}{3} \). Условию \(\frac{5x-9}{3} \geq 0 \) из этих четырёх значений удовлетворяют лишь два: 6 и 3. Значит, заданное уравнение имеет два корня: \(x=6, \; x=3 \).

Третий способ (графический).
1) Построим график функции \(y = |x^2-6x+7| \). Сначала построим параболу \(y = x^2-6x+7 \). Имеем \(x^2-6x+7 = (x-3)^2-2 \). График функции \(y = (x-3)^2-2 \) можно получить из графика функции \(y = x^2 \) сдвигом его на 3 единицы масштаба вправо (по оси x) и на 2 единицы масштаба вниз (по оси y). Прямая x=3 - ось интересующей нас параболы. В качестве контрольных точек для более точного построения графика удобно взять точку (3; -2) - вершину параболы, точку (0; 7) и симметричную ей относительно оси параболы точку (6; 7).
Чтобы построить теперь график функции \(y = |x^2-6x+7| \), нужно оставить без изменения те части построенной параболы, которые лежат не ниже оси x, а ту часть параболы, которая лежит ниже оси x, отобразить зеркально относительно оси x.
2) Построим график линейной функции \(y = \frac{5x-9}{3} \). В качестве контрольных точек удобно взять точки (0; –3) и (3; 2).

Существенно то, что точка х = 1,8 пересечения прямой с осью абсцисс располагается правее левой точки пересечения параболы с осью абсцисс - это точка \(x=3-\sqrt{2} \) (поскольку \(3-\sqrt{2} 3) Судя по чертежу, графики пересекаются в двух точках - А(3; 2) и В(6; 7). Подставив абсциссы этих точек x = 3 и x = 6 в заданное уравнение, убеждаемся, что и при том и при другом значении получается верное числовое равенство. Значит, наша гипотеза подтвердилась - уравнение имеет два корня: x = 3 и x = 6. Ответ: 3; 6.

Замечание . Графический способ при всём своём изяществе не очень надёжен. В рассмотренном примере он сработал только потому, что корни уравнения - целые числа.

ПРИМЕР 3. Решить уравнение \(|2x-4|+|x+3| = 8 \)

Первый способ
Выражение 2x–4 обращается в 0 в точке х = 2, а выражение х + 3 - в точке х = –3. Эти две точки разбивают числовую прямую на три промежутка: \(x

Рассмотрим первый промежуток: \((-\infty; \; -3) \).
Если x Рассмотрим второй промежуток: \([-3; \; 2) \).
Если \(-3 \leq x Рассмотрим третий промежуток: \(

Говоря простым языком, модуль — это «число без минуса». И именно в этой двойственности (где-то с исходным числом ничего не надо делать, а где-то придётся убрать какой-то там минус) и заключается вся сложность для начинающих учеников.

Есть ещё геометрическое определение. Его тоже полезно знать, но обращаться к нему мы будем лишь в сложных и каких-то специальных случаях, где геометрический подход удобнее алгебраического (спойлер: не сегодня).

Определение. Пусть на числовой прямой отмечена точка $a$. Тогда модулем $\left| x-a \right|$ называется расстояние от точки $x$ до точки $a$ на этой прямой.

Если начертить картинку, то получится что-то типа этого:


Графическое определение модуля

Так или иначе, из определения модуля сразу следует его ключевое свойство: модуль числа всегда является величиной неотрицательной . Этот факт будет красной нитью идти через всё наше сегодняшнее повествование.

Решение неравенств. Метод интервалов

Теперь разберёмся с неравенствами. Их существует великое множество, но наша задача сейчас — уметь решать хотя бы самые простые из них. Те, которые сводятся к линейным неравенствам, а также к методу интервалов.

На эту тему у меня есть два больших урока (между прочем, очень, ОЧЕНЬ полезных — рекомендую изучить):

  1. Метод интервалов для неравенств (особенно посмотрите видео);
  2. Дробно-рациональные неравенства — весьма объёмный урок, но после него у вас вообще не останется каких-либо вопросов.

Если вы всё это знаете, если фраза «перейдём от неравенства к уравнению» не вызывает у вас смутное желание убиться об стену, то вы готовы: добро пожаловать в ад к основной теме урока.:)

1. Неравенства вида «Модуль меньше функции»

Это одна из самых часто встречающихся задач с модулями. Требуется решить неравенство вида:

\[\left| f \right| \lt g\]

В роли функций $f$ и $g$ может выступать что угодно, но обычно это многочлены. Примеры таких неравенств:

\[\begin{align} & \left| 2x+3 \right| \lt x+7; \\ & \left| {{x}^{2}}+2x-3 \right|+3\left(x+1 \right) \lt 0; \\ & \left| {{x}^{2}}-2\left| x \right|-3 \right| \lt 2. \\\end{align}\]

Все они решаются буквально в одну строчку по схеме:

\[\left| f \right| \lt g\Rightarrow -g \lt f \lt g\quad \left(\Rightarrow \left\{ \begin{align} & f \lt g, \\ & f \gt -g \\\end{align} \right. \right)\]

Нетрудно заметить, что избавляемся от модуля, но взамен получаем двойное неравенство (или, что тоже самое, систему из двух неравенств). Зато этот переход учитывает абсолютно все возможные проблемы: если число под модулем положительно, метод работает; если отрицательно — всё равно работает; и даже при самой неадекватной функции на месте $f$ или $g$ метод всё равно сработает.

Естественно, возникает вопрос: а проще нельзя? К сожалению, нельзя. В этом вся фишка модуля.

Впрочем, хватит философствовать. Давайте решим парочку задач:

Задача. Решите неравенство:

\[\left| 2x+3 \right| \lt x+7\]

Решение. Итак, перед нами классическое неравенство вида «модуль меньше» — даже преобразовывать нечего. Работаем по алгоритму:

\[\begin{align} & \left| f \right| \lt g\Rightarrow -g \lt f \lt g; \\ & \left| 2x+3 \right| \lt x+7\Rightarrow -\left(x+7 \right) \lt 2x+3 \lt x+7 \\\end{align}\]

Не торопитесь раскрывать скобки, перед которыми стоит «минус»: вполне возможно, что из-за спешки вы допустите обидную ошибку.

\[-x-7 \lt 2x+3 \lt x+7\]

\[\left\{ \begin{align} & -x-7 \lt 2x+3 \\ & 2x+3 \lt x+7 \\ \end{align} \right.\]

\[\left\{ \begin{align} & -3x \lt 10 \\ & x \lt 4 \\ \end{align} \right.\]

\[\left\{ \begin{align} & x \gt -\frac{10}{3} \\ & x \lt 4 \\ \end{align} \right.\]

Задача свелась к двум элементарным неравенствам. Отметим их решения на параллельных числовых прямых:

Пересечение множеств

Пересечением этих множеств и будет ответ.

Ответ: $x\in \left(-\frac{10}{3};4 \right)$

Задача. Решите неравенство:

\[\left| {{x}^{2}}+2x-3 \right|+3\left(x+1 \right) \lt 0\]

Решение. Это задание уже чуть посложнее. Для начала уединим модуль, перенеся второе слагаемое вправо:

\[\left| {{x}^{2}}+2x-3 \right| \lt -3\left(x+1 \right)\]

Очевидно, перед нами вновь неравенство вида «модуль меньше», поэтому избавляемся от модуля по уже известному алгоритму:

\[-\left(-3\left(x+1 \right) \right) \lt {{x}^{2}}+2x-3 \lt -3\left(x+1 \right)\]

Вот сейчас внимание: кто-то скажет, что я немного извращенец со всеми этими скобками. Но ещё раз напомню, что наша ключевая цель — грамотно решить неравенство и получить ответ . Позже, когда вы в совершенстве освоите всё, о чём рассказано в этом уроке, можете сами извращаться как хотите: раскрывать скобки, вносить минусы и т.д.

А мы для начала просто избавимся от двойного минуса слева:

\[-\left(-3\left(x+1 \right) \right)=\left(-1 \right)\cdot \left(-3 \right)\cdot \left(x+1 \right)=3\left(x+1 \right)\]

Теперь раскроем все скобки в двойном неравенстве:

Переходим к двойному неравенству. В этот раз выкладки будут посерьёзнее:

\[\left\{ \begin{align} & {{x}^{2}}+2x-3 \lt -3x-3 \\ & 3x+3 \lt {{x}^{2}}+2x-3 \\ \end{align} \right.\]

\[\left\{ \begin{align} & {{x}^{2}}+5x \lt 0 \\ & {{x}^{2}}-x-6 \gt 0 \\ \end{align} \right.\]

Оба неравенства являются квадратными и решаются методом интервалов (потому и говорю: если не знаете, что это такое, лучше пока не браться за модули). Переходим к уравнению в первом неравенстве:

\[\begin{align} & {{x}^{2}}+5x=0; \\ & x\left(x+5 \right)=0; \\ & {{x}_{1}}=0;{{x}_{2}}=-5. \\\end{align}\]

Как видим, на выходе получилось неполное квадратное уравнение, которое решается элементарно. Теперь разберёмся со вторым неравенством системы. Там придётся применить теорему Виета:

\[\begin{align} & {{x}^{2}}-x-6=0; \\ & \left(x-3 \right)\left(x+2 \right)=0; \\& {{x}_{1}}=3;{{x}_{2}}=-2. \\\end{align}\]

Отмечаем полученные числа на двух параллельных прямых (отдельная для первого неравенства и отдельная для второго):

Опять же, поскольку мы решаем систему неравенств, нас интересует пересечение заштрихованных множеств: $x\in \left(-5;-2 \right)$. Это и есть ответ.

Ответ: $x\in \left(-5;-2 \right)$

Думаю, после этих примеров схема решения предельно ясна:

  1. Уединить модуль, перенеся все другие слагаемые в противоположную часть неравенства. Таким образом мы получим неравенство вида $\left| f \right| \lt g$.
  2. Решить это неравенство, избавившись от модуля по описанной выше схеме. В какой-то момент потребуется перейти от двойного неравенства к системе из двух самостоятельных выражений, каждое из которых уже можно решать отдельно.
  3. Наконец, останется лишь пересечь решения этих двух самостоятельных выражений — и всё, мы получим окончательный ответ.

Аналогичный алгоритм существует и для неравенств следующего типа, когда модуль больше функции. Однако там есть парочка серьёзных «но». Об этих «но» мы сейчас и поговорим.

2. Неравенства вида «Модуль больше функции»

Выглядят они так:

\[\left| f \right| \gt g\]

Похоже на предыдущее? Похоже. И тем не менее решаются такие задачи совсем по-другому. Формально схема следующая:

\[\left| f \right| \gt g\Rightarrow \left[ \begin{align} & f \gt g, \\ & f \lt -g \\\end{align} \right.\]

Другими словами, мы рассматриваем два случая:

  1. Сначала просто игнорируем модуль — решаем обычное неравенство;
  2. Затем по сути раскрываем модуль со знаком «минус», а затем умножаем обе части неравенства на −1, меня при этом знак.

При этом варианты объединены квадратной скобкой, т.е. перед нами совокупность двух требований.

Обратите внимание ещё раз: перед нами не система, а совокупность, поэтому в ответе множества объединяются, а не пересекаются . Это принципиальное отличие от предыдущего пункта!

Вообще, с объединениями и пересечениями у многих учеников сплошная путаница, поэтому давайте разберёмся в этом вопросе раз и навсегда:

  • «∪» — это знак объединения. По сути, это стилизованная буква «U», которая пришла к нам из английского языка и является аббревиатурой от «Union», т.е. «Объединения».
  • «∩» — это знак пересечения. Эта хрень ниоткуда не пришла, а просто возникла как противопоставление к «∪».

Чтобы ещё проще было запомнить, просто пририсуйте к этим знакам ножки, чтобы получились бокалы (вот только не надо сейчас обвинять меня в пропаганде наркомании и алкоголизма: если вы всерьёз изучаете этот урок, то вы уже наркоман):

Разница между пересечением и объединением множеств

В переводе на русский это означает следующее: объединение (совокупность) включает в себя элементы из обоих множеств, поэтому никак не меньше каждого из них; а вот пересечение (система) включает в себя лишь те элементы, которые одновременно находятся и в первом множестве, и во втором. Поэтому пересечение множеств никогда не бывает больше множеств-исходников.

Так стало понятнее? Вот и отлично. Переходим к практике.

Задача. Решите неравенство:

\[\left| 3x+1 \right| \gt 5-4x\]

Решение. Действуем по схеме:

\[\left| 3x+1 \right| \gt 5-4x\Rightarrow \left[ \begin{align} & 3x+1 \gt 5-4x \\ & 3x+1 \lt -\left(5-4x \right) \\\end{align} \right.\]

Решаем каждое неравенство совокупности:

\[\left[ \begin{align} & 3x+4x \gt 5-1 \\ & 3x-4x \lt -5-1 \\ \end{align} \right.\]

\[\left[ \begin{align} & 7x \gt 4 \\ & -x \lt -6 \\ \end{align} \right.\]

\[\left[ \begin{align} & x \gt 4/7\ \\ & x \gt 6 \\ \end{align} \right.\]

Отмечаем каждое полученное множество на числовой прямой, а затем объединяем их:

Объединение множеств

Совершенно очевидно, что ответом будет $x\in \left(\frac{4}{7};+\infty \right)$

Ответ: $x\in \left(\frac{4}{7};+\infty \right)$

Задача. Решите неравенство:

\[\left| {{x}^{2}}+2x-3 \right| \gt x\]

Решение. Ну что? Да ничего — всё то же самое. Переходим от неравенства с модулем к совокупности двух неравенств:

\[\left| {{x}^{2}}+2x-3 \right| \gt x\Rightarrow \left[ \begin{align} & {{x}^{2}}+2x-3 \gt x \\ & {{x}^{2}}+2x-3 \lt -x \\\end{align} \right.\]

Решаем каждое неравенство. К сожалению, корни там будут не оч:

\[\begin{align} & {{x}^{2}}+2x-3 \gt x; \\ & {{x}^{2}}+x-3 \gt 0; \\ & D=1+12=13; \\ & x=\frac{-1\pm \sqrt{13}}{2}. \\\end{align}\]

Во втором неравенстве тоже немного дичи:

\[\begin{align} & {{x}^{2}}+2x-3 \lt -x; \\ & {{x}^{2}}+3x-3 \lt 0; \\ & D=9+12=21; \\ & x=\frac{-3\pm \sqrt{21}}{2}. \\\end{align}\]

Теперь нужно отметить эти числа на двух осях — по одной оси для каждого неравенства. Однако отмечать точки нужно в правильном порядке: чем больше число, тем дальше сдвигам точку вправо.

И вот тут нас ждёт подстава. Если с числами $\frac{-3-\sqrt{21}}{2} \lt \frac{-1-\sqrt{13}}{2}$ всё ясно (слагаемые в числителе первой дроби меньше слагаемых в числителе второй, поэтому сумма тоже меньше), с числами $\frac{-3-\sqrt{13}}{2} \lt \frac{-1+\sqrt{21}}{2}$ тоже не возникнет затруднений (положительное число заведомо больше отрицательного), то вот с последней парочкой всё не так однозначно. Что больше: $\frac{-3+\sqrt{21}}{2}$ или $\frac{-1+\sqrt{13}}{2}$? От ответа на этот вопрос будет зависеть расстановка точек на числовых прямых и, собственно, ответ.

Поэтому давайте сравнивать:

\[\begin{matrix} \frac{-1+\sqrt{13}}{2}\vee \frac{-3+\sqrt{21}}{2} \\ -1+\sqrt{13}\vee -3+\sqrt{21} \\ 2+\sqrt{13}\vee \sqrt{21} \\\end{matrix}\]

Мы уединили корень, получили неотрицательные числа с обеих сторон неравенства, поэтому вправе возвести обе стороны в квадрат:

\[\begin{matrix} {{\left(2+\sqrt{13} \right)}^{2}}\vee {{\left(\sqrt{21} \right)}^{2}} \\ 4+4\sqrt{13}+13\vee 21 \\ 4\sqrt{13}\vee 3 \\\end{matrix}\]

Думаю, тут и ежу понятно, что $4\sqrt{13} \gt 3$, поэтому $\frac{-1+\sqrt{13}}{2} \gt \frac{-3+\sqrt{21}}{2}$, окончательно точки на осях будут расставлены вот так:

Случай некрасивых корней

Напомню, мы решаем совокупность, поэтому в ответ пойдёт объединение, а не пересечение заштрихованных множеств.

Ответ: $x\in \left(-\infty ;\frac{-3+\sqrt{21}}{2} \right)\bigcup \left(\frac{-1+\sqrt{13}}{2};+\infty \right)$

Как видите, наша схема прекрасно работает как для простых задач, так и для весьма жёстких. Единственное «слабое место» в таком подходе — нужно грамотно сравнивать иррациональные числа (и поверьте: это не только корни). Но вопросам сравнения будет посвящён отдельный (и очень серьёзный урок). А мы идём дальше.

3. Неравенства с неотрицательными «хвостами»

Вот мы и добрались до самого интересного. Это неравенства вида:

\[\left| f \right| \gt \left| g \right|\]

Вообще говоря, алгоритм, о котором мы сейчас поговорим, верен н только для модуля. Он работает во всех неравенствах, где слева и справа стоят гарантированно неотрицательные выражения:

Что делать с этими задачами? Просто помните:

В неравенствах с неотрицательными «хвостами» можно возводить обе части в любую натуральную степень. Никаких дополнительных ограничений при этом не возникнет.

Прежде всего нас будет интересовать возведение в квадрат — он сжигает модули и корни:

\[\begin{align} & {{\left(\left| f \right| \right)}^{2}}={{f}^{2}}; \\ & {{\left(\sqrt{f} \right)}^{2}}=f. \\\end{align}\]

Вот только не надо путать это с извлечением корня из квадрата:

\[\sqrt{{{f}^{2}}}=\left| f \right|\ne f\]

Бесчисленное множество ошибок было допущено в тот момент, когда ученик забывал ставить модуль! Но это совсем другая история (это как бы иррациональные уравнения), поэтому не будем сейчас в это углубляться. Давайте лучше решим парочку задач:

Задача. Решите неравенство:

\[\left| x+2 \right|\ge \left| 1-2x \right|\]

Решение. Сразу заметим две вещи:

  1. Это нестрогое неравенство. Точки на числовой прямой будут выколоты.
  2. Обе стороны неравенства заведомо неотрицательны (это свойство модуля: $\left| f\left(x \right) \right|\ge 0$).

Следовательно, можем возвести обе части неравенства в квадрат, чтобы избавиться от модуля и решать задачу обычным методом интервалов:

\[\begin{align} & {{\left(\left| x+2 \right| \right)}^{2}}\ge {{\left(\left| 1-2x \right| \right)}^{2}}; \\ & {{\left(x+2 \right)}^{2}}\ge {{\left(2x-1 \right)}^{2}}. \\\end{align}\]

На последнем шаге я слегка схитрил: поменял последовательность слагаемых, воспользовавшись чётностью модуля (по сути, умножил выражение $1-2x$ на −1).

\[\begin{align} & {{\left(2x-1 \right)}^{2}}-{{\left(x+2 \right)}^{2}}\le 0; \\ & \left(\left(2x-1 \right)-\left(x+2 \right) \right)\cdot \left(\left(2x-1 \right)+\left(x+2 \right) \right)\le 0; \\ & \left(2x-1-x-2 \right)\cdot \left(2x-1+x+2 \right)\le 0; \\ & \left(x-3 \right)\cdot \left(3x+1 \right)\le 0. \\\end{align}\]

Решаем методом интервалов. Переходим от неравенства к уравнению:

\[\begin{align} & \left(x-3 \right)\left(3x+1 \right)=0; \\ & {{x}_{1}}=3;{{x}_{2}}=-\frac{1}{3}. \\\end{align}\]

Отмечаем найденные корни на числовой прямой. Ещё раз: все точки закрашены, поскольку исходное неравенство — нестрогое!

Избавление от знака модуля

Напомню для особо упоротых: знаки мы берём из последнего неравенства, которое было записано перед переходом к уравнению. И закрашиваем области, требуемые в том же неравенстве. В нашем случае это $\left(x-3 \right)\left(3x+1 \right)\le 0$.

Ну вот и всё. Задача решена.

Ответ: $x\in \left[ -\frac{1}{3};3 \right]$.

Задача. Решите неравенство:

\[\left| {{x}^{2}}+x+1 \right|\le \left| {{x}^{2}}+3x+4 \right|\]

Решение. Делаем всё то же самое. Я не буду комментировать — просто посмотрите на последовательность действий.

Возводим в квадрат:

\[\begin{align} & {{\left(\left| {{x}^{2}}+x+1 \right| \right)}^{2}}\le {{\left(\left| {{x}^{2}}+3x+4 \right| \right)}^{2}}; \\ & {{\left({{x}^{2}}+x+1 \right)}^{2}}\le {{\left({{x}^{2}}+3x+4 \right)}^{2}}; \\ & {{\left({{x}^{2}}+x+1 \right)}^{2}}-{{\left({{x}^{2}}+3x+4 \right)}^{2}}\le 0; \\ & \left({{x}^{2}}+x+1-{{x}^{2}}-3x-4 \right)\times \\ & \times \left({{x}^{2}}+x+1+{{x}^{2}}+3x+4 \right)\le 0; \\ & \left(-2x-3 \right)\left(2{{x}^{2}}+4x+5 \right)\le 0. \\\end{align}\]

Метод интервалов:

\[\begin{align} & \left(-2x-3 \right)\left(2{{x}^{2}}+4x+5 \right)=0 \\ & -2x-3=0\Rightarrow x=-1,5; \\ & 2{{x}^{2}}+4x+5=0\Rightarrow D=16-40 \lt 0\Rightarrow \varnothing . \\\end{align}\]

Всего один корень на числовой прямой:

Ответ — целый интервал

Ответ: $x\in \left[ -1,5;+\infty \right)$.

Небольшое замечание насчёт последней задачи. Как точно подметил один мой ученик, оба подмодульных выражения в данном неравенстве заведомо положительны, поэтому знак модуля можно без ущерба для здоровья опустить.

Но это уже совсем другой уровень размышлений и другой подход — его условно можно назвать методом следствий. О нём — в отдельном уроке. А сейчас перейдём к финальной части сегодняшнего урока и рассмотрим универсальный алгоритм, который работает всегда. Даже тогда, когда все предыдущие подходы оказались бессильны.:)

4. Метод перебора вариантов

А что, если все эти приёмы не помогут? Если неравенство не сводится неотрицательным хвостам, если уединить модуль не получается, если вообще боль-печаль-тоска?

Тогда на сцену выходит «тяжёлая артиллерия» всей математики — метод перебора. Применительно к неравенствам с модулем выглядит он так:

  1. Выписать все подмодульные выражения и приравнять их к нулю;
  2. Решить полученные уравнения и отметить найденные корни на одной числовой прямой;
  3. Прямая разобьётся на несколько участков, внутри которого каждый модуль имеет фиксированный знак и потому однозначно раскрывается;
  4. Решить неравенство на каждом таком участке (можно отдельно рассмотреть корни-границы, полученные в пункте 2 — для надёжности). Результаты объединить — это и будет ответ.:)

Ну как? Слабо? Легко! Только долго. Посмотрим на практике:

Задача. Решите неравенство:

\[\left| x+2 \right| \lt \left| x-1 \right|+x-\frac{3}{2}\]

Решение. Эта хрень не сводится к неравенствам вида $\left| f \right| \lt g$, $\left| f \right| \gt g$ или $\left| f \right| \lt \left| g \right|$, поэтому действуем напролом.

Выписываем подмодульные выражения, приравниваем их к нулю и находим корни:

\[\begin{align} & x+2=0\Rightarrow x=-2; \\ & x-1=0\Rightarrow x=1. \\\end{align}\]

Итого у нас два корня, которые разбивают числовую прямую на три участка, внутри которых каждый модуль раскрывается однозначно:

Разбиение числовой прямой нулями подмодульных функций

Рассмотрим каждый участок отдельно.

1. Пусть $x \lt -2$. Тогда оба подмодульных выражения отрицательны, и исходное неравенство перепишется так:

\[\begin{align} & -\left(x+2 \right) \lt -\left(x-1 \right)+x-1,5 \\ & -x-2 \lt -x+1+x-1,5 \\ & x \gt 1,5 \\\end{align}\]

Получили довольно простое ограничение. Пересечём его с исходным предположением, что $x \lt -2$:

\[\left\{ \begin{align} & x \lt -2 \\ & x \gt 1,5 \\\end{align} \right.\Rightarrow x\in \varnothing \]

Очевидно, что переменная $x$ не может одновременно быть меньше −2, но больше 1,5. Решений на этом участке нет.

1.1. Отдельно рассмотрим пограничный случай: $x=-2$. Просто подставим это число в исходное неравенство и проверим: выполняется ли оно?

\[\begin{align} & {{\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|}_{x=-2}} \\ & 0 \lt \left| -3 \right|-2-1,5; \\ & 0 \lt 3-3,5; \\ & 0 \lt -0,5\Rightarrow \varnothing . \\\end{align}\]

Очевидно, что цепочка вычислений привела нас к неверному неравенству. Следовательно, исходное неравенство тоже неверно, и $x=-2$ не входит в ответ.

2. Пусть теперь $-2 \lt x \lt 1$. Левый модуль уже раскроется с «плюсом», но правый — всё ещё с «минусом». Имеем:

\[\begin{align} & x+2 \lt -\left(x-1 \right)+x-1,5 \\ & x+2 \lt -x+1+x-1,5 \\& x \lt -2,5 \\\end{align}\]

Снова пересекаем с исходным требованием:

\[\left\{ \begin{align} & x \lt -2,5 \\ & -2 \lt x \lt 1 \\\end{align} \right.\Rightarrow x\in \varnothing \]

И снова пустое множество решений, поскольку нет таких чисел, которые одновременно меньше −2,5, но больше −2.

2.1. И вновь частный случай: $x=1$. Подставляем в исходное неравенство:

\[\begin{align} & {{\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|}_{x=1}} \\ & \left| 3 \right| \lt \left| 0 \right|+1-1,5; \\ & 3 \lt -0,5; \\ & 3 \lt -0,5\Rightarrow \varnothing . \\\end{align}\]

Аналогично предыдущему «частному случаю», число $x=1$ явно не входит в ответ.

3. Последний кусок прямой: $x \gt 1$. Тут все модули раскрываются со знаком «плюс»:

\[\begin{align} & x+2 \lt x-1+x-1,5 \\ & x+2 \lt x-1+x-1,5 \\ & x \gt 4,5 \\\end{align}\]

И вновь пересекаем найденное множество с исходным ограничением:

\[\left\{ \begin{align} & x \gt 4,5 \\ & x \gt 1 \\\end{align} \right.\Rightarrow x\in \left(4,5;+\infty \right)\]

Ну наконец-то! Мы нашли интервал, который и будет ответом.

Ответ: $x\in \left(4,5;+\infty \right)$

Напоследок — одно замечание, которое, возможно, убережёт вас от глупых ошибок при решении реальных задач:

Решения неравенств с модулями обычно представляют собой сплошные множества на числовой прямой — интервалы и отрезки. Гораздо реже встречаются изолированные точки. И ещё реже случается так, что границ решения (конец отрезка) совпадает с границей рассматриваемого диапазона.

Следовательно, если границы (те самые «частные случаи») не входят в ответ, то почти наверняка не войдут в ответ и области слева-справа от этих границ. И напротив: граница вошла в ответ — значит, и какие-то области вокруг неё тоже будут ответами.

Помните об этом, когда проверяете свои решения.

Существует несколько способов решения неравенств, содержащих модуль. Рассмотрим некоторые из них.

1) Решение неравенства с помощью геометрического свойства модуля.

Напомню, что такое геометрическое свойство модуля: модуль числа x – это расстояние от начала координат до точки с координатой x.

В ходе решения неравенств этим способом может возникнуть 2 случая:

1. |x| ≤ b,

И неравенство с модулем очевидно сводится к системе двух неравенств. Тут знак может быть и строгим, в этом случае точки на картинке будут «выколотыми».

2. |x| ≥ b, тогда картинка решения выглядит так:

И неравенство с модулем очевидно сводится к совокупности двух неравенств. Тут знак может быть и строгим, в этом случае точки на картинке будут «выколотыми».

Пример 1.

Решить неравенство |4 – |x|| 3.

Решение.

Данное неравенство равносильно следующей совокупности:

U [-1;1] U

Пример 2.

Решить неравенство ||x+2| – 3| 2.

Решение.

Данное неравенство равносильно следующей системе.

{|x + 2| – 3 ≥ -2
{|x + 2| – 3 ≤ 2,
{|x + 2| ≥ 1
{|x + 2| ≤ 5.

Решим отдельно первое неравенство системы. Оно эквивалентно следующей совокупности:

U [-1; 3].

2) Решение неравенств, используя определение модуля.

Напомню для начала определение модуля.

|a| = a, если a 0 и |a| = -a, если a < 0.

Например, |34| = 34, |-21| = -(-21) = 21.

Пример 1.

Решить неравенство 3|x – 1| x + 3.

Решение.

Используя определение модуля получим две системы:

{x – 1 ≥ 0
{3(x – 1) ≤ x + 3

{x – 1 < 0
{-3(x – 1) ≤ x + 3.

Решая первую вторую системы в отдельности, получим:

{x ≥ 1
{x ≤ 3,

{x < 1
{x ≥ 0.

Решением исходного неравенства будут все решения первой системы и все решения второй системы.

Ответ: x € .

3) Решение неравенств методом возведения в квадрат.

Пример 1.

Решить неравенство |x 2 – 1| < | x 2 – x + 1|.

Решение.

Возведем обе части неравенства в квадрат. Замечу, что возводить обе части неравенства в квадрат можно только в том случае, когда они обе положительные. В данном случае у нас и слева и справа стоят модули, поэтому мы можем это сделать.

(|x 2 – 1|) 2 < (|x 2 – x + 1|) 2 .

Теперь воспользуемся следующим свойством модуля: (|x|) 2 = x 2 .

(x 2 – 1) 2 < (x 2 – x + 1) 2 ,

(x 2 – 1) 2 – (x 2 – x + 1) 2 < 0.

(x 2 – 1 – x 2 + x – 1)(x 2 – 1 + x 2 – x + 1) < 0,

(x – 2)(2x 2 – x) < 0,

x(x – 2)(2x – 1) < 0.

Решаем методом интервалов.

Ответ: x € (-∞; 0) U (1/2; 2)

4) Решение неравенств методом замены переменных.

Пример.

Решить неравенство (2x + 3) 2 – |2x + 3| 30.

Решение.

Заметим, что (2x + 3) 2 = (|2x + 3|) 2 . Тогда получим неравенство

(|2x + 3|) 2 – |2x + 3| ≤ 30.

Сделаем замену y = |2x + 3|.

Перепишем наше неравенство с учетом замены.

y 2 – y ≤ 30,

y 2 – y – 30 ≤ 0.

Разложим квадратный трехчлен, стоящий слева, на множители.

y1 = (1 + 11) / 2,

y2 = (1 – 11) / 2,

(y – 6)(y + 5) ≤ 0.

Решим методом интервалов и получим:

Вернемся к замене:

5 ≤ |2x + 3| ≤ 6.

Данное двойное неравенство равносильно системе неравенств:

{|2x + 3| ≤ 6
{|2x + 3| ≥ -5.

Решим каждое из неравенств в отдельности.

Первое равносильно системе

{2x + 3 ≤ 6
{2x + 3 ≥ -6.

Решим ее.

{x ≤ 1.5
{x ≥ -4.5.

Второе неравенство очевидно выполняется для всех x, так как модуль по определению число положительное. Так как решение системы – это все x, которые удовлетворяют одновременно и первому и второму неравенству системы, то решением исходной системы будет решение ее первого двойного неравенства (ведь второе верно для всех x).

Ответ: x € [-4,5; 1,5].

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.