Важнейшим источником, от которого поверхность Земли и атмосфера получают тепловую энергию, является Солнце. Оно посылает в мировое пространство колоссальное количество лучистой энергии: тепловой, световой, ультрафиолетовой. Излучаемые Солнцем электромагнитные волны распространяются со скоростью 300 000 км/с.

От величины угла падения солнечных лучей зависит нагревание земной поверхности. Все солнечные лучи приходят на поверхность Земли параллельно друг другу, но так как Земля имеет шарообразную форму, солнечные лучи падают на разные участки ее поверхности под разными углами. Когда Солнце в зените, его лучи падают отвесно и Земля нагревается сильнее.

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях на единицу поверхности в год.

Солнечная радиация определяет температурный режим воздушной тропосферы Земли.

Необходимо заметить, что общее количество солнечного излучения более чем в два миллиарда раз превышает количество энергии, получаемое Землей.

Радиация, достигающая земной поверхности, состоит из прямой и рассеянной.

Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию.

Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

Суммарная солнечная радиация

Все солнечные лучи, поступающие на Землю, составляют суммарную солнечную радиацию, т. е. совокупность прямой и рассеянной радиации (рис. 1).

Рис. 1. Суммарная солнечная радиация за год

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*10 2 Дж/м 2 , на широте около 60° обоих полушарий он снижается до 8*10 2 -13*10 2 Дж/м 2 .

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат.convectio - доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).

Памятка для решения задач по теме «Земля как планета Солнечной системы»

    Для выполнения заданий на определение высоты Солнца над горизонтом в различных пунктах, находящихся на одной паралдлели, необходимо необходимо определить полуденный меридиан, используя данные о времени Гринвичского меридиана. Полуденный меридиан определеяется по формуле:

    (12час.- время Гринвичского меридиана)*15º - если меридиан в Восточном полушарии;

    (время Гринвичского меридиана - 12 час.)*15º - если меридиан в Западном полушарии.

Чем ближе расположены предложенные в задании меридианы к полуденному меридиану, тем выше в них будет находиться Солнце, чем дальше - тем ниже.

Пример1. .

Определите, в каком из пунктов, обозначенных буквами на карте Австралии, 21 марта солнце будет находиться выше всего над горизонтом в 5 часов утра по солнечному времени Гринвичского меридиана. Запишите обоснование Вашего ответа.

Ответ. В точке А,

Точка А ближе других точек к полуденному меридиану (12 - 5)*15º =120º в.д.

Пример2. Определите, в каком из обозначенных буквами на карте Северной Америки пунктов Солнце будет находиться ниже всего над горизонтом в 18 ч. по времени Гринвичского меридиана. Ход ваших рассуждений запишите.

Ответ. В точке А (18-12)*15 º =90 º

2. Для выполнения заданий на определение высоты Солнца над горизонтом в различных пунктах, не находящихся на одной параллели, и когда есть указание на день зимнего (22 декабря) или летнего(22 июня) солнцестояния, нужно

    помнить, что Земля движется против часовой стрелки и чем чем восточнее находится пункт, тем раньше Солнце встанет над горизонтом.;

    провести анализ положения указанных в задании пунктов относительно полярных кругов и тропиков. Например, если в вопросе есть указание на день - 20 декабря, это значит день, близкий ко дню зимнего солнцестояния, когда на территории севернее полярного круга наблюдается полярная ночь. Значит, чем севернее расположен пункт, тем позже Солнце встанет над горизонтом, чем южнее, тем раньше.

Определите, в каком из пунктов, обозначенных буквами на карте Северной Америки, 20 декабря Солнце раньше всего по времени Гринвичского меридиана поднимется над горизонтом. Ход ваших рассуждений запишите.

Ответ. В точке С.

Точка А находится восточнее точки С, а точка С севернее (20 декабря продолжительность дня тем короче, чем ближе к северному полюсу).

    1. Чтобы выполнить задания по определению продолжительности дня (ночи) в связи с изменением угла наклона земной оси к плоскости орбиты, нужно помнить - градусная мера угла наклона земной оси к плоскости орбиты Земли определяет параллель, на которой будет находиться Полярный круг. Затем проводится анализ предложенной в задании ситуации. Например, если территория находится в условиях большой продолжительности дня (в июне в северном полушарии), то чем ближе территория находится к Полярному кругу, тем день длиннее, чем дальше - тем короче.

Определите, на какой из параллелей: 20° с.ш., 10° с.ш., на экваторе, 10° ю.ш., или 20° ю.ш. – будет наблюдаться максимальная продолжительность дня в день, когда Земля находится на орбите в положении, показанном на рисунке цифрой 3? Свой ответ обоснуйте.

Ответ. Максимальная продолжительность будет на широте 20 ю.ш.

В точке 3 Земля находится в день зимнего солнцестояния - 22 декабря, в условиях большей продолжительности дня - Южное полушарие. Точка А занимает самое южное положение.

На какой из параллелей, обозначенных на рисунке буквами, 22 декабря продолжительность светового дня наименьшая?

4. Для определения географической широты местности учитывается зависимость угла падения солнечных лучей отот широты местности. В дни равноденствия (21марта и 23 сентября), когда лучи Солнца падают отвесно на экватор, для определения географической широты используется формула:

90 º - угол падения солнечных лучей = широта местности (северная или южная определяется по тени отбрасываемых объектами).

В дни солнцестояний (22 июня и 22 декабря) необходимо учитывать, что лучи Солнца падают отвесно (под углом 90º ) на тропик (23,5º с.ш. и 23,5º ю.ш.). Поэтому для определения широты местности в освещенном полушарии(например, 22 июня в Северном полушарии) используется формула:

90º- (угол падения солнечных лучей - 23,5º) = широта местности

Для определения широты местности в неосвещенном полушарии (например, 22 декабря в Северном полушарии) используется формула:

90º - (угол падения солнечных лучей + 23,5º) = широта местности

Пример1.

Определите географические координаты пункта, если известно, что в дни равноденствия полуденное Солнце стоит там над горизонтом на высоте 40 º (тень от предмета падает на север), а местное время опережает время Гринвичского меридиана на 3 часа. Запишите свои расчеты и рассуждения

Ответ. 50 º с.ш., 60 º в.д.

90 º - 40 º = 50 º ( с.ш. , т. к. тень от предметов падает на север в северном полушарии)

(12-9)х15 = 60º ( в.д. , т. к. местное время опрежает Гринвичское, значит пункт находится восточнее)

Пример2.

Определите географические координаты пункта, расположенного в США, если известно, что 21 марта в 17 часов по солнечному времени Гринвичского меридиана в этом пункте полдень и Солнце находится на высоте 50° над горизонтом. Ход ваших рассуждений запишите.

Ответ. 40 º с.ш., 75 º з.д.

90 º -50 º =40 º ( с.ш. -т.к. США находятся в северном полушарии)

(17ч. -12ч.)*15 = 75 º .д., т.к.находится от Гринвичскогоь меридиана к западу на 3 часовых пояса )

Пример3.

Определите географическую широту места, если известно, что 22 июня полуденное Солнце стоит там над горизонтом на высоте 35 º с.ш. Запишите расчеты.

Ответ. 78,5 º с.ш.

90 º -(35 º -23,5 º ) = 78,5 с.ш.

5. Для определения меридиана (географической долготы местности), на котором расположен пункт, пло времени Гринвичского меридиана и местному солнечному времени, необходимо определить разницу во времени между ними. Например, если на Гринвичском меридиане полдень (12 часов), а местное солнечное время в указанном пункте 8 часов, разница(12-8) составляет 4 часа. Протяженность одного часового пояса 15º. Для определения искомого меридианапроводится вычисление 4 х 15º = 60º. Чтобы определить полушарие, в котором находится данный меридиан, нужноьпомнить, что Земля вращается с запада на восток (против часовой стрелки). Значит, если время Гринвичского меридиана больше, чем в заданном пункте, пункт находится в Западном полушарии(как в предложенном примере). Если время Гринвичского меридиана меньше, чем в заданном пункте, пункт находится в Восточном полушарии.

Пример.

На каком меридиане расположен пункт, если изхвестно, что в полдень по времени Гринвичского меридиана местное солнечное время в нем 16 часов? Ход ваших рассуждений запишите.

Ответ. Пункт находится на меридиане 60 º в.д.

16ч. -12ч. = 4ч.(разница во времени)

4х15 º = 60 º

Восточная долгота, т. к. в пункте 16.00, когда на Гринвиче еще 12.00(т.е. пункт находится восточнее)

Жизнь на нашей планете зависит от количества солнечного света и тепла. Страшно представить даже на миг, что было бы, если бы на небе не было такой звезды, как Солнце. Каждая травинка, каждый листочек, каждый цветочек нуждается в тепле и свете, как люди в воздухе.

Угол падения лучей солнца равен высоте солнца над горизонтом

Количество солнечного света и тепла, которое поступает на земную поверхность, прямо пропорционально углу падения лучей. Солнечные лучи могут падать на Землю под углом от 0 до 90 градусов. Угол попадания лучей на землю разный, потому что наша планета имеет форму шара. Чем он больше, тем светлее и теплее.

Таким образом, если луч идёт под углом 0 градусов, он только скользит вдоль поверхности земли, не нагревая её. Такой угол падения бывает на Северном и Южном полюсах, за полярным кругом. Под прямым углом солнечные лучи падают на экватор и на поверхность между Южным и

Если угол попадания солнечных лучей на землю прямой, это говорит о том, что

Таким образом, лучей на поверхность земли и высота солнца над горизонтом равны между собой. Зависят они от географической широты. Чем ближе к нулевой широте, тем угол падения лучей ближе к 90 градусам, тем выше находится солнце над горизонтом, тем теплее и светлее.

Как солнце изменяет свою высоту над горизонтом

Высота солнца над горизонтом не является постоянной величиной. Напротив, она всегда изменяется. Причина этого кроется в непрерывном движении планеты Земля вокруг звезды Солнце, а также вращении планеты Земля вокруг собственной оси. В результате день сменяет ночь, а времена года друг друга.

Территория между тропиками получает больше всех тепла и света, здесь день и ночь практически равны друг другу по продолжительности, а солнце находится в зените 2 раза в год.

Поверхность за полярным кругом получает всех меньше тепла и света, здесь существуют такие понятия, как и ночь, которые длятся около полугода.

Дни осеннего и весеннего равноденствия

Выделены 4 основные астрологические даты, которые определяет высота солнца над горизонтом. 23 сентября и 21 марта - дни осеннего и весеннего равноденствия. Это означает, что высота солнца над горизонтом в сентябре и марте в эти дни 90 градусов.

Южное и освещаются солнцем одинаково, а долгота ночи равна долготе дня. Когда в Северном полушарии наступает астрологическая осень, то в Южном, наоборот, весна. То же самое можно сказать о зиме и лете. Если в Южном полушарии зима, то в Северном - лето.

Дни летнего и зимнего солнцестояния

22 июня и 22 декабря - дни летнего и 22 декабря наблюдается самый короткий день и самая длинная ночь в Северном полушарии, а зимнее солнце находится на самой низкой высоте над горизонтом за весь год.

Выше широты 66,5 градуса солнце находится под горизонтом и не восходит. Это явление, когда зимнее солнце не восходит на горизонт, называется полярной ночью. Самая короткая ночь бывает на широте 67 градусов и длится всего 2 суток, а самая длинная бывает на полюсах и длится 6 месяцев!

Декабрь является из всего года тем месяцем, когда в Северном полушарии самые длинные ночи. Люди в Центральной России просыпаются на работу в темноте и возвращаются тоже в темное время суток. Это тяжелый месяц для многих, так как нехватка солнечного света сказывается на физическом и моральном состоянии людей. По этой причине может даже развиться депрессия.

В Москве в 2016 г. восход солнца в декабре 1 числа будет в 08.33. При этом долгота дня составит 7 часов 29 минут. за горизонт будет очень рано, в 16.03. Ночь составит 16 часов 31 минуту. Таким образом, получается, что долгота ночи в 2 раза больше, чем долгота дня!

В этом году день зимнего солнцестояния - 21 декабря. Самый короткий день будет длиться ровно 7 часов. Затем 2 дня продержится такая же ситуация. И уже с 24 декабря день пойдёт на прибыль медленно, но верно.

В среднем в сутки будет прибавляться по одной минуте светлого времени. В конце месяца восход солнца в декабре будет ровно в 9 часов, что на 27 минут позже, чем 1-го декабря

22 июня - день летнего солнцестояния. Всё происходит с точностью до наоборот. За весь год именно в эту дату самый длинный день по продолжительности и самая короткая ночь. Это касаемо Северного полушария.

В Южном всё наоборот. С этим днём связаны интересные природные явления. За Полярным кругом наступает полярный день, солнце не заходит за горизонт на Северном полюсе 6 месяцев. В Санкт-Петербурге в июне начинаются загадочные белые ночи. Длятся они примерно с середины июня в течение двух-трёх недель.

Все эти 4 астрологические даты могут меняться на 1-2 дня, так как солнечный год не всегда совпадает с календарным годом. Также смещения происходят в високосные года.

Высота солнца над горизонтом и климатические условия

Солнце является одним из самых важных климатообразующих факторов. В зависимости от того, как изменялась высота солнца над горизонтом над конкретным участком земной поверхности, меняются климатические условия и времена года.

Например, на Крайнем Севере лучи солнца падают под очень маленьким углом и только лишь скользят вдоль поверхности земли, совсем не нагревая её. Под условием этого фактора климат здесь крайне суровый, присутствует вечная мерзлота, холодные зимы с леденящими ветрами и снегами.

Чем больше высота солнца над горизонтом, тем теплее климат. Например, на экваторе он необычайно жаркий, тропический. Сезонные колебания также в районе экватора практически не чувствуются, в этих районах вечное лето.

Измерение высоты солнца над горизонтом

Как говорится, всё гениальное - просто. Так и здесь. Прибор для измерения высоты солнца над горизонтом элементарно прост. Он представляет собой горизонтальную поверхность с шестом посередине длиной 1 метр. В солнечный день в полдень шест отбрасывает самую короткую тень. С помощью этой кратчайшей тени и проводятся расчёт и измерения. Нужно замерить угол между концом тени и отрезком, соединяющим конец шеста с концом тени. Эта величина угла и будет являться углом нахождения солнца над горизонтом. Этот прибор называется гномоном.

Гномон - это древний астрологический инструмент. Существуют и другие приборы для измерения высоты солнца над горизонтом, такие как секстант, квадрант, астролябия.

Высота солнца существенно влияет на приход солнечной радиации. Когда угол падения солнечных лучей мал, то лучи должны проходить путь сквозь толщу атмосферы. Солнечное излучение частично поглощается, часть лучей отражается от частиц, взвешенных в воздухе, и достигает земной поверхности в виде рассеянного излучения.

Высота солнца непрерывно изменяется по мере перехода от зимы к лету, как и при» смене суток. Наибольшее значение этот угол достигает в 12 ч 00 мин (солнечное время). Принято говорить, что в этот момент времени солнце находится в зените. В полдень интенсивность излучения также достигает максимального значения. Минимальные значения интенсивности излучения достигаются утром и вечером, когда солнце расположено низко над горизонтом, а также зимой. Правда, зимой на землю падает несколько больше прямого солнечного света. Это обусловлено тем, что абсолютная влажность зимнего воздуха ниже и поэтому он меньше поглощает солнечное излучение.

Солнце восходит в 6 ч 00 мин на востоке и незначительно освещает восточную фасадную стену (только в виде излучения, отраженного атмосферой). С увеличением угла падения солнечных лучей быстро возрастает интенсивность солнечной радиации, падающей на поверхность фасадной стены. Примерно в 8 ч интенсивность солнечной радиации составляет уже около 500 Вт/м², а максимального значения, равного примерно 700 Вт/м², она достигает на южной фасадной стене здания немногим ранее полудня.

При вращении земного шара вокруг своей оси за одни сутки, т. е. при видимом движении солнца вокруг земного шара, меняется угол падения солнечных лучей не только в вертикальном, но и в горизонтальном направлении. Этот угол в горизонтальной плоскости называется азимутальным углом. Он показывает, на сколько градусов угол падения солнечных лучей отклоняется от северного направления, если полный круг составляет 360 °. Вертикальный и горизонтальный углы связаны между собой так, что при изменении времен года всегда два раза в год угол высоты расположения солнца на небосводе оказывается одинаковым при одних и тех же значениях азимутального угла.

Траектории Солнца при его видимом движении вокруг земного шара зимой и летом в дни весеннего и осеннего равноденствия. Проектируя эти траектории на горизонтальную плоскость, получают плоскостное изображение, с помощью которого обеспечивается возможность точно описать положение солнца на небосводе, если смотреть с какой-то определенной точки на земном шаре. Такая карта солнечной траектории называется солнечной диаграммой или просто солнечной картой. Поскольку траектория солнца изменяется при перемещении с юга (от экватора) на север, то для каждой широты существует своя характерная солнечная карта.

Отражение солнечного излучения от поверхности земли

Зимой на вертикальные поверхности, например, на фасадные стены зданий, может отражаться от земной поверхности значительное количество дополнительного солнечного излучения. Из общего количества солнечной энергии, падающей на горизонтальную поверхность земли, до 50—80% в зависимости от чистоты снега отражается от снежного покрова. Неровная поверхность земли, оставшаяся под снежным покровом растительность и т. д. рассеивают большую часть солнечного излучения. Это означает, что только примерно половина излучения, падающего на горизонтальную поверхность, отражается и попадает на поверхность фасадной стены. Можно вычислить, что в результате отражения возрастает вероятность использования солнечного излучения примерно на 25%. Такой выигрыш имеет существенное значение, особенно в начале весны, когда угол высоты расположения солнца на небосводе быстро увеличивается и соответственно на поверхность земли будет падать и отражаться от нее большее количество солнечных лучей.

Снег является естественной теплоизоляцией; 30 см снега соответствует слою минеральной ваты толщиной 5 см. Весной снег оттаивает сначала с южной стороны, и поэтому возрастает площадь поверхности, через которую солнечный свет проникает в теплицу (если оттаивает изморозь на стекле).

Бывший директор Научно-исследовательского института метеорологии профессор Росси разработал интересный вариант строительства теплицы в Лапландии. В этом решении оптимально использованы климатические условия Лапландии как в отношении накопления солнечной энергии (на отопление), так и с точки зрения защиты теплицы от ветра и теплопотерь.

Южная половина небосвода

Хороший метод определения периода инсоляции теплицы заключается в следующем: необходимо представить, что вы стоите в этой теплице и смотрите по часовой стрелке с востока на запад и от горизонта вверх. Тем самым вы как будто находитесь в центре небосвода и теплицы, и впереди открывается вид на южную половину неба. Начиная с осени и вплоть до весны солнце восходит и заходит по такой полукуполообразной зоне. В любой день указанного периода оно перемещается вдоль поверхности этой зоны и его видно (в безоблачную погоду) с утра до вечера. В условиях Финляндии солнце никогда не светит прямо сверху вниз, как это наблюдается в южных странах недалеко от экватора (±23,5 ° северной и южной широты). Однако вследствие рассеяния солнечного излучения, например в облачный день, свет приходит в помещение теплицы со всех сторон, даже непосредственно сверху (рис. 43). Необходимо, чтобы растения ежедневно в течение как можно более длительного времени подвергались солнечному освещению, поскольку реакция фотосинтеза не происходит, если освещенность будет слишком низкой. Большинству растений требуется минимальная освещенность солнечным светом от 2000 до 3000 лк с тем, чтобы обеспечивались удовлетворительные условия их роста.

Рис. 42. Вид на южную половину небосвода из теплицы при отсутствии преград.

Рис. 43. Вид из теплицы на южную половину небосвода.

Даже в том случае, когда часть стен и потолка создают преграду, открывается 50% южной половины небосвода.

В середине зимы такие значения освещенности достигаются на открытом воздухе только в полдень примерно в течение 1 ч, а зачастую из-за толстого слоя облаков даже это исключается. Только в феврале (октябре) достигаются желаемые усредненные уровни освещенности в течение достаточно длительного времени (примерно с 9 до 15 ч).

Для выращивания растений освещенность является более важным фактором, чем температура, поэтому путем соответствующего размещения и придания формы такой теплице необходимо гарантировать, чтобы сама теплица и особенно растения получили достаточное количество световой энергии. Солнечные лучи должны проникать сквозь 1—2 слоя стеклянного или полиэтиленового покрытия, поэтому интенсивность солнечного света, попадающего в помещение теплицы, уменьшается примерно на 30%. В окружающей среде также нередко имеются здания и растения, которые создают тень и тем самым уменьшают полезную освещенность, создаваемую солнечным светом.

Существуют две причины, по которым теплицы не рекомендуется возводить полностью из прозрачных материалов: во-первых, в солнечные дни в такой теплице может накопиться слишком много лучистой энергии, в результате чего температура поднимается там до недопустимого уровня; во-вторых, светопропускающие материалы отличаются плохими теплоизоляционными свойствами, в связи с чем могут возникнуть большие теплопотери.

Для получения удовлетворительного конечного результата необходимо оптимизировать ряд факторов, например ориентацию теплицы, размер застекленной площади оболочки теплицы, ее форму и тепло-аккумулирующую способность, а также свести к минимуму затененность теплицы окружающей средой в холодное время года.

Этот процесс весьма сложен и требует помощи ЭВМ. На основе проведения автоматической обработки информации «atk» и учета практического опыта можно сформулировать «правило большого пальца» (т. е. лучшее решение), согласно которому площадь свето-пропускающего покрытия теплицы должна быть такой, чтобы открывалась половина небосвода.

Если теплица используется в основном как бытовое помещение, то площадь светопропускающего покрытия можно несколько уменьшить. В этом случае важно достигнуть благоприятной температуры, т. е. уменьшения теплопотерь, так как теплицу стремятся использовать осенью и весной вечерами, когда солнце уже за горизонтом. В этом случае небольшие участки для выращивания растений можно организовать в хорошо освещеннных местах.