В этой статье мы рассмотрим такую характеристику теплообмена, как коэффициент рекуперации. Он показывает степень использования одним носителем тепла другого при теплообмене. Коэффициент рекуперации может называться коэффициентом регенерации тепла, эффективности теплообмена или термической эффективности.

В первой части статьи мы попробуем найти универсальные соотношения для теплообмена. Они могут быть получены из самых общих физических принципов и не требуют проведения каких-либо измерений. Во второй части представим зависимости реальных коэффициентов рекуперации от основных характеристик теплообмена для реальных воздушных завес или отдельно для теплообменных блоков «вода - воздух», которые уже были рассмотрены в статьях «Мощность тепловой завесы при произвольных расходах теплоносителя и воздуха. Интерпретация опытных данных» и «Мощность тепловой завесы при произвольных расходах теплоносителя и воздуха. Инварианты процесса теплопередачи», опубликованных журналом «Мир климата» в номерах 80 и 83 соответственно. Будет показано, как коэффициенты зависят от характеристик теплообменника, а также то, какое влияние на них оказывают расходы теплоносителей. Будут объяснены некоторые парадоксы теплообмена, в частности парадокс высокого значения коэффициента рекуперации при большой разнице в расходах теплоносителей. Для упрощения само понятие рекуперации и смысл ее количественного определения (коэффициент) рассмотрим на примере теплообменников «воздух - воздух». Это позволит определить подход к смыслу явления, который затем можно расширить и на любой обмен, в том числе «вода - воздух». Отметим, что в теплообменных блоках «воздух - воздух» могут быть организованы как перекрестные, принципиально близкие теплообменникам «вода - воздух», так и встречные токи обменивающихся теплом сред. В случае встречных токов, которые определяют высокие значения коэффициентов рекуперации, практические закономерности теплообмена могут несколько отличаться от разобранных ранее . Важно, что универсальные закономерности теплообмена справедливы вообще для любых типов теплообменного блока. В рассуждениях статьи будем считать, что энергия при теплопередаче сохраняется. Это равносильно утверждению, что мощность излучения и конвекция тепла от корпуса теплового оборудования, обусловленные значением температуры корпуса, малы по сравнению с мощностью полезной теплопередачи. Будем также считать, что теплоемкость носителей не зависит от их температур.

КОГДА ВАЖЕН ВЫСОКИЙ КОЭФФИЦИЕНТ РЕКУПЕРАЦИИ?

Можно считать, что способность к передаче определенной величины тепловой мощности - одна из основных характеристик любого теплового оборудования. Чем выше эта способность, тем оборудование дороже. Коэффициент рекуперации в теории может изменяться от 0 до 100%, а на практике часто от 25 до 95%. Интуитивно можно предположить, что высокий коэффициент рекуперации, так же как и способность к передаче большой мощности, подразумевает высокие потребительские качества оборудования. Однако в действительности такой прямой связи не наблюдается, все зависит от условий использования теплообмена. Когда же высокая степень рекуперации тепла важна, а когда второстепенна? Если теплоноситель, от которого производится отбор тепла или холода, используется лишь однократно, то есть не закольцован, и сразу после использования безвозвратно сбрасывается во внешнюю среду, то для эффективного использования этого тепла желательно использовать аппарат с высоким коэффициентом рекуперации. В качестве примеров можно привести использование тепла или холода части геотермальных установок, открытых водоемов, источников технологических избытков тепла, где невозможно замкнуть контур теплоносителя. Высокая рекуперация важна, когда в сети теплоснабжения расчет осуществляется только по расходу воды и значению температуры прямой воды. Для теплообменников «воздух - воздух» это использование тепла вытяжного воздуха, который сразу после теплообмена уходит во внешнюю среду. Другой предельный случай реализуется, когда теплоноситель оплачивается строго по отобранной от него энергии. Это можно назвать идеальным вариантом сети теплоснабжения. Тогда можно заявить, что такой параметр, как коэффициент рекуперации, не имеет вообще никакого значения. Хотя при ограничениях по обратной температуре носителя коэффициент рекуперации также обретает смысл. Отметим, что при некоторых условиях желателен более низкий коэффициент рекуперации оборудования.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА РЕКУПЕРАЦИИ

Определение коэффициента рекуперации приводится во многих справочных пособиях (например, , ). Если теплом обмениваются две среды 1 и 2 (рис. 1),

которые имеют теплоемкости с 1 и с 2 (в Дж/кгxК) и массовые расходы g 1 и g 2 (в кг/с) соответственно, то коэффициент рекуперации теплообмена можно представить в виде двух эквивалентных соотношений:

= (с 1 g 1)(Т 1 - Т 1 0) / (сg) min (T 2 0 - T 1 0) = (с 2 g 2)(Т 2 0 - Т 2) / (сg) min (T 2 0 - T 1 0). (1)

В этом выражении Т 1 и Т 2 - конечные температуры этих двух сред, Т 1 0 и Т 2 0 - начальные, а (cg) min - минимальное из двух значений так называемого теплового эквивалента этих сред (Вт/К) при расходах g 1 и g 2 , (cg) min = min{(с 1 g 1), (с 2 g 2)}. Для расчета коэффициента можно использовать любое из выражений, поскольку их числители, каждый из которых выражает полную мощность теплообмена (2), равны.

W = (с 1 g 1)(Т 1 - Т 1 0) = (с 2 g 2)(Т 2 0 - Т 2). (2)

Второе равенство в (2) можно рассматривать как выражение закона сохранения энергии при теплообмене, который для тепловых процессов называется первым началом термодинамики. Можно заметить, что в любом из двух эквивалентных определений в (1) присутствуют только три из четырех температур обмена. Как было указано, значение приобретает значимость, когда один из теплоносителей сбрасывается после использования. Отсюда следует, что выбор из двух выражений в (1) можно всегда сделать так, чтобы именно конечная температура этого носителя была исключена из выражения для расчета. Приведем примеры.

а) Рекуперация тепла вытяжного воздуха

Известным примером теплообменника с высоким необходимым значением может служить рекуператор тепла вытяжного воздуха для подогрева приточного воздуха (рис. 2).

Если обозначить температуру вытяжного воздуха Т комн, уличного Т ул, а приточного после подогрева в рекуператоре Т пр, то, учитывая одинаковое значение теплоемкостей с двух воздушных потоков (они практически одинаковы, если пренебречь малыми зависимостями от влажности и температуры воздуха), можно получить хорошо известное выражение для:

G пр (Т пр - Т ул) / g min (T комн - T ул). (3)

В этой формуле gmin обозначает наименьший g min = min{g пр, g выт } из двух секундных расходов gпр приточного и gвыт вытяжного воздуха. Когда поток приточного воздуха не превышает поток вытяжного, формула (3) упрощается и приводится к виду = (Т пр - Т ул) / (T комн - T ул). Температура, которая не учитывается в формуле (3), - это температура Т’ вытяжного воздуха после прохождения теплообменника.

б) Рекуперация в воздушной завесе или произвольном нагревателе «вода - воздух»

Поскольку при всех возможных вариантах единственная температура, значение которой может быть несущественно, это температура обратной воды Т х, ее следует исключить из выражения для коэффициента рекуперации. Если обозначить температуру воздуха окружения воздушной завесы Т 0 , подогретого завесой воздуха - Т, а температуру поступающей в теплообменник горячей воды Т г, (рис. 3), для получим:

Сg(Т – Т 0) / (сg) min (T г – T 0). (4)

В этой формуле с - теплоемкость воздуха, g - секундный массовый воздушный расход.

Обозначение (сg) min - это наименьшее значение из воздушного сg и водяного с W G тепловых эквивалентов, с W - теплоемкость воды, G - секундный массовый расход воды: (сg) min = min{(сg), (с W G)}. Если расход воздуха относительно невелик и воздушный эквивалент не превышает водяной, формула также упрощается: = (Т – Т 0) / (T г – T 0).

ФИЗИЧЕСКИЙ СМЫСЛ КОЭФФИЦИЕНТА РЕКУПЕРАЦИИ

Можно предположить, что значение коэффициента рекуперации теплового аппарата это количественное выражение термодинамической эффективности передачи мощности. Известно, что для теплопередачи эта эффективность ограничена вторым началом термодинамики, которое также известно как закон неубывания энтропии.

Однако можно показать, что - это действительно термодинамическая эффективность в смысле неубывания энтропии только в случае равенства тепловых эквивалентов двух обменивающихся теплом сред. В общем случае неравенства эквивалентов максимально возможное теоретическое значение = 1 обусловлено постулатом Клаузиуса, который сформулирован так: «Тепло не может передаваться от более холодного к более теплому телу без других изменений в то же время, связанных с этой передачей». В этом определении под другими изменениями подразумевается работа, которая совершается над системой, например, при обратном цикле Карно, на основе которого работают кондиционеры. Учитывая, что насосы и вентиляторы при теплообмене с такими носителями, как вода, воздух и другими, производят над ними ничтожно малую работу по сравнению с энергиями обмена теплом, можно считать, что при таком теплообмене постулат Клаузиуса выполняется с высокой степенью точности.

Хотя принято считать, что и постулат Клаузиуса и принцип неубывания энтропии - это всего лишь разные по форме выражения формулировки второго начала термодинамики для замкнутых систем, это не так. Чтобы опровергнуть их эквивалентность покажем, что они могут приводить в общем случае к различным ограничениям при теплообмене. Рассмотрим рекуператор «воздух - воздух» в случае равных тепловых эквивалентов двух обменивающихся сред, что при равенстве теплоемкостей подразумевает равенство массовых расходов двух воздушных потоков, и = (Т пр - Т ул) / (T комн - T ул). Пусть для определенности комнатная температура T комн = 20 о С, а уличная T ул = 0 о С. Если полностью отвлечься от скрытой теплоты воздуха, которая обусловлена его влажностью, то, как следует из (3), температура приточного воздуха Т пр = 16 о С соответствует коэффициенту рекуперации = 0,8, а при Т пр = 20 о С достигнет значения 1. (Температуры выбрасываемого на улицу в этих случаях воздуха Т’ будут соответственно 4 о С и 0 о С). Покажем, что именно = 1 для этого случая есть максимум. Ведь даже если приточный воздух имел температуру Т пр = 24 о С, а выбрасываемый на улицу Т’ = –4 о С, то первое начало термодинамики (закон сохранения энергии) не было бы нарушено. Уличному воздуху ежесекундно будет передаваться Е = сg·24 о С Джоулей энергии и столько же забираться у комнатного, а при этом будет равно 1,2, или 120%. Однако такая передача тепла невозможна именно вследствие того, что энтропия системы при этом уменьшится, что запрещено вторым началом термодинамики.

Действительно, по определению энтропии S, ее изменение связанно с изменением полной энергии газа Q соотношением dS = dQ/T (температура измеряется в Кельвинах), а учитывая, что при постоянном давлении газа dQ = mcdT, m - масса газа, с (или как ее часто обозначают с р) - теплоемкость при постоянном давлении, dS = mc · dT/T. Таким образом, S = mc · ln(T 2 / Т 1), где Т 1 и Т 2 начальная и конечная температуры газа. В обозначениях формулы (3) для секундного изменения энтропии приточного воздуха получим Sпр = сg ln(Tпр / Tул), если уличный воздух нагревается, оно положительно. Для изменения энтропии вытяжного воздуха Sвыт = с g · ln(T / Tкомн). Изменение энтропии всей системы за 1 секунду:

S = S пр + S выт = сg(ln(T пр / T ул) + ln(T’ / T комн)). (5)

Для всех случаев будем считать Т ул = 273К, Т комн = 293К. Для = 0,8 из (3), Т пр = 289К и из (2) Т’ = 277К, что позволит рассчитать общее изменение энтропии S =0,8 = 8 10 –4 cg. При = 1 аналогично получим Т пр = 293К и Т’ = 273К, и энтропия, как и следует ожидать, сохраняется S =1 = 0. Гипотетическому случаю = 1,2 соответствуют Т пр = 297К и Т’ = 269К, и расчет демонстрирует уменьшение энтропии: S =1,2 = –1,2 10 –4 cg. Этот расчет можно считать обоснованием невозможности этого процесса c = 1,2 в частности, и вообще для любого > 1 также из-за S < 0.

Итак, при расходах, которые обеспечивают равные тепловые эквиваленты двух сред (для одинаковых сред это соответствует равным расходам), коэффициент рекуперации определяет эффективность обмена в том смысле, что = 1 определяет предельный случай сохранения энтропии. Постулат Клаузиуса и принцип неубывания энтропии для такого случая эквивалентны.

Теперь рассмотрим для теплообмена «воздух - воздух» неравные воздушные расходы. Пусть, например, массовый расход приточного воздуха 2g, а вытяжного - g. Для изменения энтропии при таких расходах получим:

S = S пр + S выт = 2с · g ln(T пр / T ул) + с · g ln(T’ / T комн). (6)

Для = 1 при тех же начальных температурах Т ул = 273К и Т комн = 293К, используя (3), получим Т пр = 283К, так как g пр / g min = 2. Затем из закона сохранения энергии (2) получим значение Т’ = 273К. Если подставить эти значения температур в (6), то для полного изменения энтропии получим S = 0,00125сg > 0. То есть даже при самом благоприятном случае с = 1 процесс становится термодинамически неоптимален, он происходит с увеличением энтропии и, как следствие этого, в отличие от подслучая с равными расходами, всегда необратим.

Чтобы оценить масштаб этого увеличения, найдем коэффициент рекуперации для уже рассмотренного выше обмена равных расходов, чтобы в результате этого обмена была произведена такая же величина энтропии, как и для расходов, различающихся в 2 раза при = 1. Другими словами, оценим термодинамическую неоптимальность обмена разных расходов при идеальных условиях. Прежде всего само изменение энтропии мало о чем говорит, намного информативнее рассмотреть отношение S / Е изменения энтропии к переданной теплообменом энергии. Учитывая, что в вышеприведенном примере, когда энтропия возрастает на S = 0,00125сg, переданная энергия Е = сg пр (Т пр - Т ул) = 2с g 10К. Таким образом отношение S / Е = 6,25 10 –5 К -1 . Нетрудно убедиться, что к такому же «качеству» обмена при равных потоках приводит коэффициент рекуперации = 0,75026… Действительно, при тех же начальных температурах Т ул = 273К и Т комн = 293К и равных потоках этому коэффициенту соответствуют температуры Т пр = 288К и Т’ = 278К. Используя (5), получим изменение энтропии S = 0,000937сg и учитывая, что E = сg(T пр - T ул) = сg 15К, получим S / Е = 6,25 10 –5 К -1 . Итак, по термодинамическому качеству теплообмен при = 1 и при вдвое различающихся потоках соответствует теплообмену при = 0,75026… при одинаковых потоках.

Можно задаться еще одним вопросом: какими должны быть гипотетические температуры обмена с разными расходами, чтобы этот воображаемый процесс произошел без увеличения энтропии?

Для = 1,32 при тех же начальных температурах Т ул = 273К и Т комн = 293К, используя (3), получим Т пр = 286,2К и из закона сохранения энергии (2) Т’ = 266,6К. Если подставить эти значения в (6), то для полного изменения энтропии получим сg(2ln(286,2 / 273) + ln(266,6 / 293)) 0. Закон сохранения энергии и закон неубывания энтропии для этих значений температур выполняются, и все же обмен невозможен по причине того, что Т’ = 266,6К не принадлежит начальному интервалу температур. Это прямо нарушало бы постулат Клаузиуса, передавая энергию от более холодной среды к нагретой. Следовательно, этот процесс невозможен, как невозможны и другие не только с сохранением энтропии, но даже и с ее увеличением, когда конечные температуры любой из сред выходят за пределы начального интервала температур (Т ул, Т комн).

При расходах, которые обеспечивают неравные тепловые эквиваленты сред обмена, процесс теплопередачи принципиально необратим и проходит с увеличением энтропии системы даже в случае наиболее эффективного теплообмена. Эти рассуждения справедливы и для двух сред разных теплоемкостей, важно лишь то, совпадают или нет тепловые эквиваленты этих сред.

ПАРАДОКС МИНИМАЛЬНОГО КАЧЕСТВА ТЕПЛООБМЕНА С КОЭФФИЦИЕНТОМ РЕКУПЕРАЦИИ 1/2

В этом пункте рассмотрим три случая теплообмена с коэффициентами рекуперации 0, 1/2 и 1 соответственно. Пусть через теплообменники пропускаются равные потоки обменивающихся теплом сред равных теплоемкостей с некоторыми различными начальными температурами Т 1 0 и Т 2 0 . При коэффициенте рекуперации 1 две среды просто обмениваются значениями температур и конечные температуры зеркально повторяют начальные Т 1 = Т 2 0 и Т 2 = Т 1 0 . Очевидно, что энтропия при этом не изменяется S = 0, потому что на выходе те же среды тех же температур, как и на входе. При коэффициенте рекуперации 1/2 конечные температуры обеих сред будут равны среднему арифметическому значению начальных температур: Т 1 = Т 2 = 1/2 (Т 1 0 + Т 2 0). Произойдет необратимый процесс выравнивания температуры, а это равносильно росту энтропии S > 0. При коэффициенте рекуперации 0 теплообмен отсутствует. То есть Т 1 = Т 1 0 и Т 2 = Т 2 0 , и энтропия конечного состояния не изменится, что аналогично конечному состоянию системы с коэффициентом рекуперации, равным 1. Как состояние с = 1 тождественно состоянию с = 0, так же по аналогии можно показать, что состояние = 0,9 тождественно состоянию с = 0,1 и т. д. При этом состоянию с = 0,5 будет соответствовать максимальное увеличение энтропии из всех возможных коэффициентов. По-видимому, = 0,5 соответствует теплообмену минимального качества.

Конечно же, это не так. Объяснение парадокса следует начать с того, что теплообмен есть обмен энергией. Если энтропия в результате теплообмена увеличилась на некоторую величину, то качество теплообмена будет различаться в зависимости от того, была ли при этом передана теплота 1 Дж или 10 Дж. Правильнее рассматривать не абсолютное изменение энтропии S (фактически ее выработку в теплообменнике), а отношение изменения энтропии к переданной при этом энергии E. Очевидно, что для различных наборов температур можно подсчитать эти величины для = 0,5. Сложнее подсчитать это отношение для = 0, ведь это неопределенность вида 0/0. Однако несложно взять передел отношения в 0, который в практическом плане можно получить, взяв это отношение при очень малых значениях, например, 0,0001. В таблицах 1 и 2 представим эти значения для различных начальных условий по температуре.



При любых значениях и при бытовых интервалах разброса температур Т ул и Т комн (будем считать, что Т комн / Т ул x

S / E (1 / Т ул - 1 / Т комн)(1 -). (7)

Действительно, если обозначить Т комн = Т ул (1 + х), 0 < x

На графике 1 покажем эту зависимость для температур Т ул = 300К Т комн = 380К.



Это кривая не является прямой линией, определяемой приближением (7), хотя достаточно близка к ней, так что на графике они неразличимы. Формула (7) показывает, что качество теплообмена минимально именно при = 0. Сделаем еще одну оценку масштаба S / E. В примере, приведенном в , рассматривается соединение двух тепловых резервуаров с температурами Т 1 и Т 2 (Т 1 < T 2) теплопроводящим стержнем. Показано, что в стержне на единицу переданной энергии вырабатывается энтропия 1/Т 1 –1/Т 2 . Это соответствует именно минимальному качеству теплообмена при рекуперации с = 0. Интересное наблюдение заключается в том, что по физическому смыслу приведенный пример со стержнем интуитивно подобен теплообмену с = 1/2 , поскольку в обоих случаях происходит выравнивание температуры к среднему значению. Однако формулы демонстрируют, что он эквивалентен именно случаю теплообмена с = 0, то есть теплообмену с наиболее низким качеством из всех возможных. Без вывода укажем, что это же минимальное качество теплообмена S / E = 1 / Т 1 0 –1 / Т 2 0 в точности реализуется для -> 0 и при произвольном соотношении расходов теплоносителей.

ИЗМЕНЕНИЕ КАЧЕСТВА ТЕПЛООБМЕНА ПРИ РАЗЛИЧАЮЩИХСЯ РАСХОДАХ ТЕПЛОНОСИТЕЛЕЙ

Будем считать, что расходы теплоносителей различаются в n раз, а теплообмен происходит с максимально возможным качеством (= 1). Какому качеству теплообмена с равными расходами это будет соответствовать? Для ответа на этот вопрос посмотрим, как ведет себя величина S / E при = 1 для различных соотношений расходов. Для разницы расходов n = 2 это соответствие уже было подсчитано в 3 пункте: = 1 n=2 соответствует = 0,75026… при одинаковых потоках. В таблице 3 для набора температур 300К и 350К представим относительное изменение энтропии при равных расходах теплоносителей одинаковой теплоемкости для различных значений.



В таблице 4 представим также относительное изменение энтропии для различных соотношений расходов n только при максимально возможной эффективности теплопередачи (= 1) и соответствующие эффективности, приводящие к такому же качеству для равных расходов.



Представим полученную зависимость (n) на графике 2.



При бесконечной разнице расходов стремится к конечному пределу 0,46745… Можно показать, что это универсальная зависимость. Она справедлива при любых начальных температурах для любых носителей, если вместо соотношения расходов подразумевать соотношение тепловых эквивалентов. Ее также можно приблизить гиперболой, которая обозначена на графике 3 линией синего цвета:



‘(n) 0,4675+ 0,5325/n. (8)

Линией красного цвета обозначена точная зависимость (n):

Если неравные расходы реализуются при обмене с произвольным n>1 , то термодинамическая эффективность в смысле производства относительной энтропии уменьшается. Ее оценку сверху приведем без вывода:

Это соотношение стремится к точному равенству при n>1, близких к 0 или 1, а при промежуточных значениях не превышает абсолютной погрешности в несколько процентов.

Окончание статьи будет представлено в одном из следующих номеров журнала «МИР КЛИМАТА». На примерах реальных теплообменных блоков найдем значения коэффициентов рекуперации и покажем, насколько они определяются характеристиками блока, а насколько расходами теплоносителей.

ЛИТЕРАТУРА

  1. Пухов А. воздуха. Интерпретация опытных данных. // Мир климата. 2013. № 80. С. 110.
  2. Пухов А. В. Мощность тепловой завесы при произвольных расходах теплоносителя и воздуха. Инварианты процесса теплопередачи. // Мир климата. 2014. № 83. С. 202.
  3. Кейс В. М., Лондон А. Л. Компактные теплообменники. . М.: Энергия, 1967. С. 23.
  4. Уонг Х. Основные формулы и данные по теплообмену для инженеров. . М.: Атомиздат, 1979. С. 138.
  5. Кадомцев Б. Б. Динамика и информация // Успехи физических наук. Т. 164. 1994. № 5, май. С. 453.

Пухов Алексей Вячеславович,
технический директор
компании «Тропик Лайн»

До недавнего времени приточно-вытяжная вентиляция с рекуператором воздуха использовалась в России довольно редко, пока специалисты не пришли к выводу о том, что такая система - это необходимость. В основе работы вентиляции заложен принцип рекуперации. Так называется процесс, при котором из отработанного воздуха возвращается часть тепла. Покидая помещение, теплый воздух частично нагревает встречный холодный поток в теплообменнике. Таким образом, на улицу выходит полностью «отработанный» воздух, а в помещение попадает не только свежий, но и уже нагретый воздух.

Почему от вытяжной вентиляции старого типа давно пора отказаться

Почему традиционная естественная вытяжная вентиляция, которая долгие годы устанавливалась в частных домах, квартирах и зданиях, - больше не эффективна? Дело в том, что в этом случае через рамы, дверные проемы и щели должно происходить непрерывное проникновение воздуха в помещение, но в случае установки герметичных пластиковых стеклопакетов, приток воздуха сильно сокращается и в результате естественная вытяжная система вентиляции перестает нормально функционировать.
Для того, чтобы в помещениях температура воздуха была комфортной, в зимний период воздух требуется нагревать, на что в нашей стране, владельцем жилья затрачиваются огромные средства, т.к. холода в нашей стране длятся 5-6 месяцев. И хотя отопительный сезон - короче, все равно на обогрев приточного воздуха уходят огромные ресурсы. Однако на этом недостатки естественной вытяжной вентиляции не заканчиваются. С улицы в помещение попадает не только холодный, но и грязный воздух, а также периодически возникают сквозняки. Контролировать объем этих воздушных потоков нет возможности. Получается, что из-за несбалансированной вентиляции на ветер в буквальном смысле слова выбрасываются огромные деньги, потому что люди вынуждены платить за нагрев воздуха, который через пару минут улетает в трубу. Так как цены на энергоносители растут год от года, неудивительно, что вопрос об уменьшении затрат на отопление рано или поздно возникает у каждого бережливого человека, который не хочет за свой счет «отапливать улицу».

Как сберечь тепло в доме

Для сбережения тепла в системе вентиляции, - нагрева приточного холодного воздуха за счет удаляемого из помещения теплого воздуха, предназначены специальные установки-рекуператоры. В приточно-вытяжные вентиляционные установки встраивается кассета, обеспечивающая теплообмен воздуха. Выходя через неё, вытяжной воздух передает тепло стенкам теплообменника, при этом холодный воздух, идущий в помещение, нагревается от стенок. Этот принцип заложен в основу работы пластинчатых и роторных рекуператоров, которые на данный момент завоевали популярность на рынке вентиляционных установок.

Есть ли недостатки у пластинчатых рекуператоров

В устройствах данного типа потоки воздуха как бы разрезаются пластинами. Эти приточно-вытяжные системы, помимо множества преимуществ, о которых пойдет речь дальше, имеют и один недостаток: с той стороны, где выходит вытяжной воздух, на пластинах образуется наледь. Проблема объясняется просто: в результате того, что теплообменная пластина и вытяжной воздух имеют разные температуры, образуется конденсат, который, собственно, и превращается в наледь. Через замерзшие пластины воздух начинает проходить с огромным сопротивлением, и производительность вентиляции резко падает, а процесс рекуперации практически останавливается, до момента полного оттаивания пластин.
Процесс можно сравнить с тем, как если бы из морозильной камеры достали бутылку лимонада. Стекло в миг покрылось бы сначала белой пленкой, а затем - каплями воды. Можно ли бороться с проблемой обмерзания рекуператора? Специалисты нашли выход, установив в системах вентиляции с рекуперацией специальный клапан-байпас. Как только пластины покрываются слоем наледи, байпас открывается, и приточный воздух какое-то время идет в обход кассеты рекуператора, поступая в помещение практически без нагрева. При этом, пластины рекуператора довольно быстро размораживаются за счет удаляемого вытяжного воздуха, а образовавшаяся вода собирается в дренажной ванне. Ванна соединена с дренажной системой, выходящей в канализацию, и весь конденсат сливается туда. Рекуператор снова начинает эффективно работать, а воздухообмен восстанавливается.
Когда кассета размораживается, клапан снова закрывается, однако и тут есть одно «но». Когда воздух не поступает в теплообменник, обходит его, экономия энергии сводится к минимуму. Связано это с тем, что приточный воздух, как правило, кроме пластин теплообменника, догревает встроенный калорифер - точно такой же, какой имеется в простых приточных установках, но значительно меньшей мощности. Как с этим справляться? Можно ли бороться с наледью, чтобы не терять деньги?

Приточно-вытяжные вентиляционные установки с рекуперацией тепла

Производители рекуператоров нашли решение этой серьезной проблемы. Благодаря изобретению новой технологии, влага, что оседает на стенках теплообменника со стороны выходящего воздуха, начинает впитываться в них и переходить на сторону приточного воздуха - увлажняя его. Таким образом, практически вся влага, находящаяся в удаляемом воздухе, попадает обратно в помещение. За счет чего возможен этот процесс? Такого эффекта инженеры добились, создав кассеты из гигроскопичной целлюлозы. Кроме того, многие из гигроскопичной целлюлозы не имеют байпасов и не подключаются к дренажной системе с ванной и водопроводом. Всю влагу утилизируют потоки воздуха, и она остается, практически полностью в помещении. Итак, используя в рекуператоре теплообменник из целлюлозы больше не нужно использовать байпас и направлять воздух в обход пластинам рекуператора.

В итоге эффективность рекуператора удалось поднять до 90%! А это означает, что приточный воздух с улицы будет на 90% нагреваться за счет выходящего воздуха. При этом рекуператоры без проблем могут работать даже на морозе, до -30 градусов Цельсия. Такие установки отлично подходят для жилых помещений, квартир, загородных домов и коттеджей, сохраняя и поддерживая необходимую влажность и воздухообмен зимой и летом, они создают и поддерживают необходимый микроклимат в помещении круглый год, экономя при этом не малые деньги. Однако следует помнить, что рекуператоры с целлюлозными теплообменниками как и все остальные, способны обмерзать, что со временем может привести к выходу из строя теплообменной кассеты. Для того, чтобы полностью исключить возможность обмерзания, необходимо устанавливать защиту от обмерзания. Так же при всех своих положительных качествах рекуператоры с бумажным теплообменником, нельзя использовать для помещений с повышенным содержанием влаги, в частности, для . Для влажных помещений, в том числе и для бассейнов необходимо использовать приточно-вытяжные вентиляционные установки с пластинчатым рекуператором из алюминия.

Схема и принцип работы приточно-вытяжной системы вентиляции с рекуператором

Предположим, что на улице зима и температура воздуха за окном -23 0 С. При включении приточно-вытяжной установки, уличный воздух засасывается установкой при помощи встроенного вентилятора, проходит через фильтр и попадает на теплообменную кассету. Проходя через нее, он нагревается до +14 0 С. Как мы видим, в зимние холода, установка не в состоянии полностью прогреть воздух до комнатной температуры, хотя многим, возможно будет достаточно и такого нагрева, поэтому после рекуператора приточный воздух может идти сразу в помещение, или если в рекуператоре стоит так называемый «догрев воздуха» проходя через него, воздух догревается до +20 0 С и только полностью прогретый попадает в помещение. Догреватель это маломощный калорифер электрический или водяной мощностью 1-2 кВт, который может, если в этом есть необходимость, включаться при низких уличных температурах и догревать воздух до комфортной комнатной температуры. В комплектациях рекуператоров различных производителей, как правило, есть возможность выбора водяного или электрического догревателя. Напротив, комнатный воздух с температурой +18 0 С(+20 0 С) засасываясь из помещения встроенным в установку вентилятором, проходя через теплообменную кассету, охлаждается приточным воздухом и выходит на улицу из рекуператора, имея температуру -15 0 С.

Какая температура воздуха будет после рекуператора зимой и летом

Есть довольно простой способ самим посчитать, какой же температуры будет попадать воздух в помещение после рекуператора. На сколько эффективно будет прогреваться приточный воздух и будет-ли он вообще подогреваться? Что будет происходить с воздухом в рекуператоре летом?

Зима

На картинке видно, что уличный воздух равен 0 0 С, эффективность рекуператора равна 77% при этом, температура воздуха попадающего в помещение равна 15,4 0 С. А на сколько прогреется воздух, если температура на улице будет например -20 0 С? Существует формула расчета приточного воздуха для рекуператора в зависимости от его эффективности, температуры воздуха на улице и в помещении:

t (после рекуператора)=(t (внутри помещения)-t (на улице))xK (КПД рекуператора)+t (на улице)

Для нашего примера получается: 15,4 0 С=(20 0 С-0 0 С)х77%+0 0 С Если температура за окном -20 0 С, в помещении +20 0 С, эффективность рекуператора 77%, то температура воздуха после рекуператора составит: t=((20-(-20))х77%-20=10,8 0 С. Но это конечно теоретический расчет, на практике температура будет немного меньше, около +8 0 С.

Лето

Аналогично рассчитывается температура воздуха после рекуператора летом:

t (после рекуператора)=t (на улице)+(t (внутри помещения)-t (на улице))xK (КПД рекуператора)

Для нашего примера получается: 24,2 0 С=35 0 С+(21 0 С-35 0 С)х77%

Схема и принцип работы приточно-вытяжной системы вентиляции с роторным рекуператором




Принцип действия роторного рекуператора основан на обмене теплом между входящим и выходящим потоком воздуха в системе вентиляции через роторный алюминиевый теплообменник, который вращаясь с различной скоростью, позволяет осуществлять такой процесс с различной интенсивностью.

Какой рекуператор лучше

Сегодня в продаже имеются рекуператоры разных фирм производителей, отличающиеся по многим пунктам: принципу работы, эффективности, надежности, экономии и т.д. Давайте посмотрим на наиболее популярные типы рекуператоров и сравним их преимущества и недостатки.
1. Пластинчатый рекуператор с алюминиевым теплообменником. Цена такого рекуператора достаточно низкая, по сравнению с другими типами рекуператоров, что несомненно является одним из его приемуществ. В устройстве потоки воздуха не смешиваются, их разделяет алюминиевая фольга. Из минусов следует назвать не высокую производительность при низких температурах, т.к. теплообменник периодически обмерзает и должен часто оттаивать. Логично, что затраты на электроэнергию повышаются. Не желательно так же их устанавливать и в жилых помещениях, т.к в зимний период в процессе работы рекуператора, удаляется вся влага из воздуха помещения и требуется его постоянное увлажнение. Основным преимуществом алюминиевых пластинчатых рекуператоров является то, что их можно устанавливать для вентиляции бассейнов.
2. Пластинчатый рекуператор с теплообменником из пластика. Преимущества - те же, что и у предыдущего варианта, однако КПД - выше благодаря свойствам пластмассы.

3. Пластинчатый рекуператор с теплообменником из целлюлозы и одинарной кассетой. Несмотря на то, что потоки воздуха разделяются перегородками из бумаги, влага спокойно пропитывает стенки теплообменника. Важным преимуществом является то, что в помещение обратно попадает и сбереженное тепло и влага. Из-за того, что теплообменник практически не подвержен обмерзанию, не тратится время на его оттаивание, значительно увеличивается эффективность устройства. Если говорить о недостатках, то они - таковы: рекуператоры этого типа нельзя устанавливать в бассейнах, а также в любых других помещениях, где наблюдается избыточная влажность. Помимо этого рекуператор нельзя использовать для осушения. Очень часто, такие .

4. Роторный рекуператор. Отличается высоким КПД, однако этот показатель все же остается ниже, чем если бы использовалась пластинчатая установка с двойной кассетой. Отличительной особенностью является низкое потребление энергии. Что до недостатков, то отметим такие моменты, так как встречные воздушные потоки у роторного рекуператора разделены не идеально, в приточный воздух попадает небольшое количество удаляемого из помещения воздуха (пусть и незначительное). Само устройство стоит довольно дорого, т.к. используется сложная механика. Наконец, роторный рекуператор должен обслуживаться чаще, чем другие приточно-вытяжные установки и его установка во влажных помещениях не желательна.

Рекуператоры для квартир и загородных домов

Mitsubishi Lossney Electrolux EPVS DAIKIN
Sistemair SHUFT

От чего зависит цена на рекуператор

В первую очередь, цена на рекуператор зависит от производительности всей системы вентиляции. Проектировщик-профессионал сможет разработать грамотный проект, удовлетворяющий именно вашим условиям и запросам, от качества которого будет зависеть не только эффективность работы всей системы, но и ваши дальнейшие затраты на её обслуживание. Конечно оборудование можно подобрать и самому, включая и воздуховоды и решетки, но желательно, чтобы обозначенными вопросами занимался специалист. Разработка проекта стоит дополнительных денег и на первый взгляд кому-то подобные расходы покажутся довольно солидными, но если посчитать, сколько денег в результате останется в вашем бюджете благодаря грамотному , то вы удивитесь.
Выбирая самостоятельно рекуператор, первым делом обращайте внимание на цену и обещанное качество. Стоит ли устройство заявленной суммы? Или вы просто переплатите за новинку или бренд? Оборудование стоит недешево и окупается несколько лет, поэтому к выбору устройства следует подходить очень ответственно.
Обязательно проверьте наличие сертификатов на продукцию и узнайте, сколько действует гарантийный срок. Обычно гарантия дается не на рекуператор, а на его составные части. Чем лучше качество узлов, агрегатов и прочих комплектующих - тем дороже обойдется покупка. Надежность системы оценивается по сильным и слабым сторонам товара. Естественного, идеального варианта не предлагает никто, но найти наилучшее решение для конкретного помещения - вполне возможно.

Как выбрать приточно-вытяжную установку с рекуператором

Первым делом задайте продавцу следующие вопросы:
1. Какая фирма выпускает продукцию? Что о ней известно? Сколько лет на рынке? Какие ходят отзывы?
2. Какова производительность системы? Эти данные могут рассчитать специалисты, к которым вы обратитесь за консультацией, в том числе и специалисты нашей компании. Для этого вы должны указать точные параметры помещения, желательно предоставить планировку квартиры, офиса, загородного дома, коттеджа и т.д.
3. Каким будет сопротивление системы воздуховодов потокам воздуха после установки конкретной модели? Эти данные также должны рассчитывать проектировщики для каждого отдельного случая. При расчетах учитываются все диффузоры, изгибы воздуховода и многое другое. Модель и мощность рекуператора подбирается с учетом так называемой «рабочей точки» - соотношения расхода воздуха и сопротивления воздуховодов.
4. К какому классу энергопотребления относится рекуператор? Во сколько обойдется содержание системы? Сколько можно экономить электроэнергии? Это нужно знать для того, чтобы просчитать траты на отопительный сезон.
5. Чему равняется заявленный Коэффициент Полезного Действия установки и реальный? КПД рекуператоров зависит от того, какой будет разница температур в помещении и снаружи. Также на этот показатель влияют такие параметры, как: тип теплообменной кассеты, влажность воздуха, компоновка системы в целом, правильность размещения всех узлов и т.д.
Давайте посмотрим, как может рассчитываться КПД для разных типов рекуператоров.
- Если теплообменник пластинчатого рекуператора изготовлен из бумаги, то КПД составит, в среднем, 60-70%. Установка не промерзает, точнее - это случается крайне редко. Если теплообменник нужно разморозить, то система сама снижает на какое-то время производительность установки.
- Пластинчатый алюминиевый теплообменник демонстрирует высокий КПД - до 63%. А вот рекуператор окажется менее производительным. КПД здесь будет равняться 42-45%. Связано это с тем, что теплообменник должен часто оттаивать. Если же вы хотите устранить обмерзание, то придется использовать гораздо больше электроэнергии.
- Роторный рекуператор показывает высокий КПД в том случае, если обороты ротора регулирует «автоматика», руководствуясь показателями температурных датчиков, которые устанавливаются и в помещении, и на улице. Роторные рекуператоры то же подвержены обмерзанию, в результате чего, снижается КПД так же, как и у пластинчатых рекуператоров, сделанных из алюминия.

Всем известно, что существует огромное разнообразие систем для вентиляции помещения. Простейшими из них являются системы открытого типа (естественные), например, с использованием окна или форточки.

Но такой способ вентилирования абсолютно не экономичный. Кроме того, для эффективной вентиляции нужно иметь постоянно открытое окно или наличие сквозняка. Поэтому такой тип вентиляции будет крайне неэффективен. Для вентиляции жилых помещений всё чаще используется приточная вентиляция с рекуперацией тепла.

Простыми словами рекуперация тождественна слову «сохранение». Рекуперация тепла – процесс сохранения тепловой энергии. Это происходит за счёт того, что поток воздуха, который выходит из помещения, охлаждает или подогревает воздух входящий внутрь. Схематически процесс рекуперации можно представить в таком виде:

Вентиляция с рекуперацией тепла происходит по такому принципу, который должен разделить потоки особенностями конструкции рекуператора во избежание смешивания. Однако, например, роторные теплообменники не дают возможности полностью изолировать приточный воздух от выходящего.

Процент КПД рекуператора может колебаться в районе от 30 до 90 %. Для особых установок данный показатель может составить 96% сохранения энергии.

Что такое воздушный рекуператор

По своей конструкции рекуператор воздух-воздух – установка для утилизации тепла выходной воздушной массы, которая позволяет максимально рационально использовать тепло или холод.

Почему стоит выбрать рекуперационную вентиляцию

Вентиляция, которая основывается на рекуперации тепла, имеет очень высокие показатели КПД. Данный показатель рассчитывается по соотношению тепла, которое производит рекуператор в действительности, к максимальному количеству тепла, которое только возможно сохранить.

Какие бывают разновидности рекуператоров воздуха

На сегодняшний день вентиляция с рекуперацией тепла может осуществляться пятью видами рекуператоров:

  1. Пластинчатый, который имеет металлическую конструкцию и обладает высоким уровнем влагопроницаемости;
  2. Роторный;
  3. Камерного типа;
  4. Рекуператор с промежуточным носителем тепла;
  5. Тепловые трубы.

Вентиляция дома с рекуперацией тепла с использованием первого типа рекуператоров, позволяет приходящим потокам воздуха со всех сторон обтекать множество металлических пластин с повышенной теплопроводностью. КПД рекуператоров данного типа составляет от 50 до 75 %.

Особенности устройства пластинчатых рекуператоров

  • Воздушные массы не контактируют;
  • Все детали закреплены;
  • Нет подвижных элементов конструкции;
  • Не образуется конденсат;
  • Невозможно применение в качестве осушителя помещения.

Особенности роторных рекуператоров

Роторный тип рекуператоров имеет особенности конструкции, с помощью которых передача тепла происходит между приточным и выходным каналом ротора.

Роторные рекуператоры покрываются фольгой.

  • КПД до 85%;
  • Экономит электроэнергию;
  • Применим для осушения помещения;
  • Смешивание до 3% воздуха разных потоков, в связи с чем могут передаваться запахи;
  • Сложная механическая конструкция.

Приточно-вытяжная вентиляция с рекуперацией тепла, в основе которой используются камерные рекуператоры, используется крайне редко, так как имеет множество недостатков:

  • Показатель КПД до 80%;
  • Смешивания встречных потоков, в связи с чем повышается передача запахов;
  • Подвижные детали конструкции.

Рекуператоры на основе промежуточного теплоносителя имеет в конструкции водно-гликолевый раствор. Иногда в роли такого теплоносителя может выступить обычная вода

Особенности рекуператоров с промежуточным носителем тепла

  • Крайне низкий показатель КПД до 55%;
  • Полностью исключается смешивания потоков воздуха;
  • Сфера применения – большие производства.

Вентиляция с рекуперацией тепла на основе тепловых труб, зачастую, состоит из разветвлённой системы трубок, в которых находится фреон. Жидкость испаряется при нагревании. В противоположной части рекуператора фреон остывает, в результате чего часто образуется конденсат.

Особенности рекуператоров с тепловыми трубами

  • Нет подвижных частей;
  • Полностью исключена возможность загрязнения воздуха запахами;
  • Средний показатель КПД – от 50 до 70%.

На сегодняшний день выпускаются компактные установки для рекуперации воздушных масс. Одно из главных преимуществ мобильных рекуператоров – отсутствие необходимости в воздуховодах.

Основные цели рекуперации тепла

  1. Вентиляцию, основанную на рекуперации тепла, применяют для поддерживания необходимого уровня влаги и температуры внутри помещения.
  2. Для здоровья кожи. Как это ни удивительно, но системы с рекуперацией тепла имеют положительное воздействие на кожу человека, которая постоянно будет увлажнена и риск пересыхания сводится к минимуму.
  3. Чтобы избежать пересыхания мебели и скрипящего пола.
  4. Для повышения вероятности возникновения статического электричества. Данные критерий знают не все, но при повышенном статическом напряжении плесень и грибки гораздо медленнее развиваются.

Правильно подобранная приточно-вытяжная вентиляция с рекуперацией тепла для вашего дома позволит вам значительно сэкономить на отоплении в зимний период и кондиционере в летний. Кроме того, такой вид вентиляции благоприятно воздействует на человеческий организм, от чего вы будет меньше болеть, а риск возникновения грибка в доме будет сведен к минимуму.

Экология потребления. Усадьба: Потери тепла – серьезная проблема, с которой борется строительная наука. Эффективные утеплители, герметичные окна и двери решают ее лишь частично. Можно существенно снизить утечку тепла через стены, окна, крышу и пол. Несмотря на это у энергии остается еще один широкий путь для «побега». Это вентиляция, без которой невозможно обойтись в любом здании.

Потери тепла – серьезная проблема, с которой борется строительная наука. Эффективные утеплители, герметичные окна и двери решают ее лишь частично. Можно существенно снизить утечку тепла через стены, окна, крышу и пол. Несмотря на это у энергии остается еще один широкий путь для «побега». Это вентиляция, без которой невозможно обойтись в любом здании.

Получается, что зимой мы тратим драгоценное топливо на нагрев помещений и при этом непрерывно выбрасываем тепло на улицу, впуская холодный воздух.

Решить проблему энергосбережения можно с помощью рекуператора тепла. В этом устройстве теплый комнатный воздух нагревает уличный. Так достигается немалая экономия средств на отопление (до 25% от общей суммы затрат).

В летний период, когда на улице стоит жара, а в доме работает кондиционер, рекуператор тоже приносит пользу. Он охлаждает горячий входящий поток, снижая затраты на кондиционирование.

Давайте поближе познакомимся с бытовыми рекуперационными установками, чтобы иметь представление об их устройстве, достоинствах и особенностях выбора.

Виды, принцип работы и устройство рекуператоров

Идея использовать тепло комнатного воздуха для подогрева уличного оказалась очень плодотворной. Она была положена в основу работы всех рекуператоров.

На сегодняшний день используется три вида подобных устройств:

  • пластинчатые;
  • роторные;
  • рециркуляционные водяные.

Самые распространенные и простые по конструкции – пластинчатые рекуператоры. Они энергонезависимы, компактны, надежны в работе и имеют достаточно высокий КПД (40-65%).

Основная рабочая часть такого устройства – кассета, внутри которой установлены параллельные пластины. Выходящий из помещения и входящий в него воздух рассекается ими на узкие потоки, каждый из которых идет по своему каналу. Теплообмен происходит через пластины. Уличный воздух подогревается, а комнатный остывает и выбрасывается в атмосферу.

Принцип работы пластинчатого рекуператора

Главный недостаток пластинчатых установок – обмерзание в сильные морозы. Конденсат, оседающий в рекуперационном блоке, превращается в лед и резко снижает производительность устройства. Для борьбы с этим явлением было найдено три способа.

Первый – установка клапана байпаса. Получив сигнал от датчика, он пускает холодный поток в обход блока. Через пластины идет только теплый воздух, размораживающий наледь. После оттаивания и отвода конденсата клапан восстанавливает штатную работу системы.

Второй вариант – использование пластин из гигроскопичной целлюлозы. Вода, оседающая на стенках кассеты, впитывается в них и проникает в каналы, по которым движется приточный воздух. Так решается сразу две задачи: устранение конденсата и увлажнение.

Третий способ состоит в предварительном нагреве холодного потока до температуры, исключающей замерзание воды. Для этого в подающий вентиляционный канал ставят ТЭН. Необходимость в нем возникает при температуре уличного воздуха ниже -10С.

В последние годы на рынке появились пластинчатые реверсивные установки. В отличие от прямоточных устройств они работают в два такта: первый – выпуск теплого воздуха на улицу, второй – всасывание холодного через прогретый блок.

Принцип работы реверсивной установки

Еще один вид установок - роторные рекуператоры. КПД таких устройств существенно выше, чем у пластинчатых (74-87%).

Принцип действия роторной установки заключается во вращении кассеты с ячейками в потоке входящего и выходящего воздуха. Двигаясь по кругу, каналы поочередно пропускают теплый внутренний и холодный наружный потоки. Влага в этом случае не замерзает, а насыщает приточный воздух.

Следует отметить, что приточно-вытяжная установка с рекуператором роторного типа позволяет плавно регулировать теплоотдачу. Делается за счет изменения скорости вращения кассеты. Основной недостаток роторных систем - высокая стоимость обслуживания. По надежности они также уступают пластинчатым.

Следующий вид - рециркуляционная водяная установка. Она самая сложная по конструкции. Передача тепла здесь выполняется не через пластины или ротор, а с помощью антифриза или воды.

Первый жидкостно-воздушный теплообменник ставится на вытяжном канале, а второй на всасывающем. Работа идет по принципу калорифера: комнатный воздух нагревает воду, а она греет уличный.

КПД такой системы не превышает показателей пластинчатых рекуператоров (50-65%). Высокая цена, которую приходится платить за сложность конструкции, оправдывается единственным преимуществом: блоки такой установки можно разместить не в одном корпусе, а на отдаленных друг от друга участках приточно-вытяжной вентиляции. Для мощных промышленных систем это имеет большое значение. В небольших зданиях такие устройства не ставят.

Особенности выбора рекуператора

Познакомившись с особенностями работы рекуператорных установок, пора перейти к практической части – критериям выбора для выполнения конкретных задач.

Первое, на что нужно обратить внимание – способ монтажа. В рабочее положение бытовая приточно-вытяжная вентиляция с рекуперацией тепла может быть установлена несколькими способами:

  • Внутри стены. Корпус монтируется в предварительно пробуренное отверстие. С наружной стороны ставится колпак, с внутренней - решетка и блок управления.
  • Внутри помещения. Установка навешивается на стену. Снаружи ставится решетка или колпак.
  • Наружное размещение. Преимущества такого решения очевидны: минимум шума и экономия места. Канальное устройство прибора позволяет размещать его на балконах и лоджиях, а также просто на фасаде здания.

Еще один параметр, который нужно учесть при покупке – количество вентиляторов. Бюджетные рекуператоры воздуха для дома оснащаются одной вентиляционной установкой, работающей и на приток, и на вытяжку.

Более дорогие устройства имеют 2 вентилятора. Один из них закачивает, а другой выбрасывает воздух. Производительность таких приборов выше, чем одновентиляторных.

При покупке также следует обращать внимание на наличие электрического нагревателя. С его помощью исключается обмерзание кассеты и повышается нижний температурный предел работы устройства.

Функция климат-контроль. Позволяет точно задать температуру, до которой рекуператор будет нагревать воздух.

Возможность регулирования влажности. Этот параметр существенно влияет на комфорт микроклимата. Стандартный рекуператор пересушивает воздух, забирая из него влагу.

Наличие или отсутствие фильтра. Дополнительная опция, положительно влияющая на санитарные характеристики воздушной смеси.

Важный параметр, требующий внимания – температура перекачиваемого воздуха. В разных моделях ее значение может существенно отличаться. Максимально широкий диапазон рабочих температур от -40 до +50С у бытовых устройств встречается редко.

Поэтому кроме учета оптимальной производительности в м3/час, при покупке выбирайте прибор, который сможет полноценно работать в ваших климатических условиях.

Расчет производительности

Детальные расчеты работы рекуператоров в системе приточно-вытяжной вентиляции достаточно сложны. Здесь приходится учитывать множество факторов: кратность воздухообмена в помещениях, сечение каналов, скорость движения воздуха, необходимость установки глушителей и т.д. Грамотно выполнить такую задачу способны только опытные инженеры.

Рядовой потребитель может воспользоваться упрощенной методикой для того, чтобы правильно сориентироваться при покупке устройства.

Производительность рекуператора напрямую зависит от санитарной нормы расхода воздуха на 1 человека. Ее среднее значение составляет 30 м3/час. Поэтому, если в квартире или частном доме постоянно проживают 4 человека, то производительность установки должна быть не менее 4х30=120 м3/час.

Собственная электрическая мощность бытовых рекуператоров невелика (25-80 Вт). Она определяется уровнем энергопотребления канальных вентиляторов. В установках с электродогревом входящего потока ставятся ТЭНы общей мощностью от 0,8 до 2,0 КВт.

Популярные марки и ориентировочные цены

Подбирая бытовой рекуператор, следует ориентироваться на производителей и модели, заслужившие высокие оценки покупателей. В качестве примера можно привести продукцию зарубежных компаний Electrolux (Электролюкс), Mitsubishi (Мицубиси), Marley (Марлей).

Рекуператор для небольших помещений Mitsubishi Electric VL-100EU5-E. Расход воздуха 105 м3/ч. Цена от 21 000 руб.

Популярная модель от фирмы Electrolux. Ориентировочная розничная цена от 42 000 руб.

Ценники 2017 года на бытовые установки данных брендов стартуют с отметки в 22 000 рублей и заканчиваются на уровне 60 000 рублей.

MARLEY MENV-180. Расход воздуха 90 м3/час. Стоимость от 27 500 руб.

Хорошо зарекомендовало себя оборудование российских и украинских компаний Vents (Вентс), Vakio (Вакио), Прана и Зилант. Не уступая зарубежным аналогам в производительности и надежности, зачастую они оказываются доступней.

Установка Vakio. Производительность 60 м3/ч в режиме рекуперации, до 120 м3/ч в режиме приточной вентиляции. Цена от 17 000 руб.

Ориентировочная стоимость систем рекуперации воздуха данных фирм (производительность от 120 до 250 м3/час) составляет от 17 000 до 55 000 руб.

Prava 200G. Приток - 135 м3/ч, вытяжка - 125 м3/ч. Рекомендуемая площадь для обслуживания системой до 60 м2.

Характер отзывов о рекуператорах воздуха в большинстве своем положителен. Многие владельцы отмечают, что с их помощью была решена проблема избыточной влажности, вызывавшая появление плесени и грибка в помещениях.

В расчетах срока окупаемости данного оборудования приводятся цифры от 3 до 7 лет. Данных инструментальных замеров по поводу реальной экономии энергоносителей на форумах, посвященных данной тематике мы не нашли.

Кратко о самостоятельной сборке

В большинстве фото и видеоинструкций по самостоятельному изготовлению рекуператоров рассматриваются пластинчатые модели. Это самый простой и доступный вариант для домашнего мастера.

Главная часть конструкции – теплообменник. Его делают из оцинкованной стали, нарезая ее в виде пластин размером 30х30 см. Для создания каналов на краях и посередине каждой секции с помощью силикона наклеивают пластиковые полосы толщиной 4 мм и шириной 2-3 см.

Собирают теплообменник, накладывая и поочередно поворачивая пластины на угол в 90 градусов относительно друг друга. Так получают изолированные каналы для встречного движения холодного и теплого воздуха.

После этого под размеры теплообменника изготавливают корпус из металла, ДСП или пластика. В нем делают четыре отверстия для подачи воздуха. В два из них ставят вентиляторы. Теплообменник разворачивают под углом в 45 градусов и закрепляют его в корпусе.

Завершает работу тщательная герметизация всех монтажных стыков силиконом.

Системы вентиляции в последних версиях уже не ограничиваются стандартным набором функций, главная из которых заключается в обновлении воздушной среды. Например, за счет применения технологичных фильтров оборудование минимизирует содержание вредных частиц в помещении, а также предотвращает поступление запахов. Совершенствуются и в показателях регуляции микроклимата, что особенно выгодно, с точки зрения энергосбережения. Для обеспечения этой возможности применяются приточно-вытяжные установки с рекуперацией воздушных потоков. Действие подобных систем основано на обработке тепловых потоков, которые проходят через элементы вентиляционной установки. В итоге пользователь получает не только свежий, но и нагретый естественным путем воздух.

В чем состоит принцип рекуперации?

Процесс рекуперации происходит на фоне взаимодействия воздушных потоков с разной температурой. То есть нагретые потоки отдают свое тепло холодным, таким образом, формируя оптимальный температурный баланс. В рекуперация - это передача тепла свежему воздуху, которая осуществляется в специальном теплообменнике. При этом существуют разные уровни эффективности данного процесса. К примеру, открытое окно показывает нулевую эффективность. В этом случае приточные потоки не нагреваются, а понижают температуру воздуха в самом помещении. Можно сказать, что это процесс, который противоположен рекуперации.

Средний же уровень эффективности варьируется в диапазоне 30-90 %. Оптимальный показатель достигает 60 %, а системы, которые демонстрируют показатель выше 80% считаются наиболее производительными. Самая же эффективная рекуперация - это процесс теплообмена, при котором нагрев приточных потоков достигнет уровня, соответствующего удаляемому воздуху. Но даже современные технологии не позволяют достичь 100-процентного КПД.

Рекуператор в системе вентиляции

Принцип рекуперации реализуется в системе вентиляции в виде поверхностного теплообменника. Сам процесс распределения тепла осуществляется с помощью стенки, которая разделяет два противоположно направленных потока. Схожим устройством обладают регенераторы, однако система рекуперации отличается тем, что каналы работы с воздухом остаются прежними на протяжении всего периода эксплуатации. Надо сказать, что климатическое оборудование может обслуживать не только воздушные среды. Так и рекуперация применяется также в работе с газом, жидкостями и т. д. Существуют и разные схемы конструкционного исполнения. Наиболее распространенными считаются ребристые, трубчатые и пластинчатые модели. В то же время предусматриваются разные подходы к проектированию каналов движения потоков - к примеру, можно выделить прямоточные, противоточные и перекрестные устройства.

Перекрестный пластинчатый рекуператор

В таких установках обычно используют мембранные перегородки, за счет которых обеспечивается эффективная рекуперация. Особенностью системы является то, что по мере удаления воздуха на улицу выходит и лишняя влага. Система приточно-вытяжная с рекуперацией также отличается стойкостью к обмерзанию, которая достигается без специальных нагревателей. Это преимущество позволяет использовать оборудование с перекрестно-мембранной конструкцией в условиях температурного режима до -35 °С.

Используют такие установки и в обеспечении жилых домов, и в складских помещениях, где предполагается обслуживание больших площадей. Также они получили распространение в сельском хозяйстве - например, в обустройстве птичников, овощехранилищ и животноводческих ферм. Поскольку рекуперация тепла в перекрестных конструкциях с мембранами позволяет также обеспечивать эффективное сохранение прохлады летом, данная система имеет спрос и в производственной отрасли.

Оребренные пластинчатые системы

Устройство такого рекуператора предусматривает наличие оребренных тонкостенных пластин, выполненных путем высокочастотной сварки. Металлические панели формируют конструкцию с поочередным расположением перегородок, повернутых на 90 градусов. За счет такой схемы достигается высокая температура греющей среды, минимальный уровень сопротивления, а также оптимальное отношение площади телепередающей поверхности к весу теплообменника. Кроме этого, приточные установки с рекуперацией тепла с обребренными пластинами отличаются долговечностью и невысокой ценой. Практикой использования подтверждается, что подобные системы позволяют экономить порядка 40 % То есть, минимизируются расходы на отопление, поскольку свежий воздух эффективно прогревается удаляемыми потоками.

Роторные модели

К особенностям таких установок относят низкую стоимость и довольно высокую производительность. Хотя, в плане показателей нагрева свежего воздуха данный вариант уступает пластинчатой конструкции с двойной кассетой. Несмотря на простую конфигурацию рабочих элементов, роторная установка рекуперации грешит неидеальным распределением воздушных потоков. Есть определенный риск, что чистый воздух смешается с удаляемым и в итоге пострадает качество вентиляции как таковой. К недостаткам подобных систем относится и необходимость частого техобслуживания, что особенно невыгодно при эксплуатации в жилых помещениях. Однако сам процесс нагрева достаточно эффективен.

Прямоточно-противоточные системы

Особенностью рекуператоров этого типа является трубчатая конструкция, элементы которой представлены тонкостенными сварными элементами. В процессе работы установки этого типа формируется пристенный вихрь, который повышает теплообмен, но при этом разрушается по мере роста сопротивления в воздушном канале. Чаще всего такие системы применяются в промышленности, где нужен деликатный нагрев одной из рабочих сред. Также прямоточно-противоточное оборудование используют в машиностроении для рассеивания и утилизации тепла. Востребована и бытовая приточная установка с рекуперацией этого типа - ее рекомендуют устанавливать в комнатах с герметичными металлопластиковыми окнами, а также в экологических домах.

Такие рекуператоры, как правило, интегрируют в единый воздуховодный кожух, что в процессе эксплуатации обеспечивает низкое энергопотребление, компактные размеры с возможностью скрытого монтажа, высокую производительность и надежность оборудования.

Рекуператоры для энергоэффективных домов

Сама концепция вентиляционных систем, в которых обеспечивается пассивный нагрев свежего воздуха, ориентирована на снижение платы за отопление. Но в плане оснащения рекуперация - это и экологически чистый способ нормализации микроклимата. Производители выпускают специальные линейки, в которых используются безопасные и эффективные в плане рекуперации материалы. В частности, последние модели получают трехступенчатые теплообменники, выполненные из непористых ультратонких мембран. Такое устройство позволяет отказаться от электрических воздушных нагревателей.

Кроме равномерной передачи тепла подобные устройства также эффективно работают и с влажностью. Они обеспечивают полный возврат влаги в помещение с полным исключением конденсаторов. В результате вентиляция с рекуперацией избавляется и от необходимости установки дренажных водоотводов.

Автоматика для рекуператоров

Развиваются приточно-вытяжные и в направлении электронной начинки. С целью оптимального распределения потоков производители снабжают установки возможностью автоматической регулировки положения межканальных перегородок. В более совершенных моделях предусматривается также настройка скоростных режимов, индикация температурных показателей и контроль степени загрязненности фильтров с сигнализацией. Кроме этого, современная вентиляция с рекуперацией предоставляет возможность управления внешним канальным нагревателем без подключения к процессу сторонних устройств. То есть в этом случае обеспечивается дополнительный нагрев воздуха до оптимального показателя.

Фильтры в рекуператорах

Как и все современные системы вентиляции, модели с рекуперацией предполагают включение в конструкцию очистительных устройств. Так как теплообмен предполагает максимальное сведение исходящего и нагнетаемого воздушных потоков, фильтры в данном случае играют особенно важную роль. Чаще всего в самих воздуховодах применяются фильтры типа F7, которые исключают прохождение частиц размером в 0,5 мкм. Менее распространены G3, но в зависимости от конструкции может потребоваться и такое дополнение. Для удобства в обслуживании система рекуперации чаще снабжается фильтрами, изготовленными из пластиков и специальных волокон - такие элементы легко мыть и вытряхивать. Как уже отмечалось, современные модели также оснащаются индикаторами, которые определяют момент для произведения замены фильтра.

Преимущества рекуператоров

Технологии, которые используются в приточно-вытяжных системах рекуперации, минимизируют энергопотребление и повышают эргономику климатического оборудования. На практике пользователь такой установки может почувствовать и улучшение показателей микроклимата. Конечно, рекуперация тепла не так эффективна, с точки зрения отопительной функции, как специальные нагревательные агрегаты, но ее работа не требует дополнительного потребления энергоресурсов. Включение в системы вспомогательных средств нагрева позволяет сбалансировать и повышение температурного режима, и экономию в расходах энергии. В целом же по расчетам специалистов использование рекуперации позволяет на 10-15 % снижать затраты на отопление.

Недостатки рекуператоров

У таких систем есть два серьезных недостатка. В первую очередь это обледенение теплообменников зимой. По этой причине многие пользователи жалуются на выход из строя оборудования уже в первые недели эксплуатации в условиях мороза. Однако производители стремятся улучшать защитные качества оборудования, снабжая установки и прочными вентиляторами. Второй недостаток, которым обладают приточно-вытяжные установки с рекуперацией, относится к их шумной работе. Особенно это проявляется у роторных моделей. При этом разработчики стремятся обеспечивать новые модели улучшенными средствами изоляции, поэтому на рынке можно встретить и малошумные варианты.

Что учесть в выборе установки с рекуператором?

Потребителю, который решил установить такую систему в своем доме, следует ориентироваться на производительность системы, конструкционное исполнение и функциональность. Так, показатель производительности определяет возможность работы вентиляции в помещении конкретной площади. Не менее важна и конструкция, в которой выполнено оборудование. Например, установка рекуперации тепла с трубчатыми элементами позволяет удобно выполнять монтаж с минимальными требованиями к свободному месту. Что касается функциональности, то она влияет и на способности регуляции показателей микроклимата в помещении, и на эргономические характеристики системы.

Заключение

Эксплуатация традиционных систем вентиляции не дает и намека на энергосберегающую функцию. Как правило, это прожорливые массивные установки, которые вносят существенный вклад в повышение расходов на содержание дома. На этом фоне рекуперация - это почти революционный подход к производству климатического оборудования, предполагающий рациональное использование уже отработанной тепловой энергии. Если в типовой системе реализуется нагрев воздуха по мере его поступления в помещение с помощью отопительного оборудования, то рекуперация позволяет изначально повышать температуру входящих потоков без подключения специальных нагревателей. Конечно, такие установки имеют свои недостатки, но с ними производители ведут плодотворную борьбу, совершенствуя конструкции рекуператоров.