3) P (Æ )=0.

Будем говорить, что задано вероятностное пространство , если задано пространство элементарных исходов9 и определено соответствие

w i ® P(w i ) =Pi .

Возникает вопрос: как определить из конкретных условий решаемой задачи вероятность P (w i ) отдельных элементарных исходов?

Классическое определение вероятности.

Вычислять вероятности P (w i ) можно, используя априорный подход, который заключается в анализе специфических условий данного эксперимента (до проведения самого эксперимента).

Возможна ситуация, когда пространство элементарных исходов состоит из конечного числа N элементарных исходов, причем случайный эксперимент таков, что вероятности осуществления каждого из этихN элементарных исходов представляются равными.Примеры таких случайных экспериментов: подбрасывание симметричной монеты, бросание правильной игральной кости, случайное извлечение игральной карты из перетасованной колоды. В силу введенной аксиомы вероятности каждого элементарного

исхода в этом случае равны N . Из этого следует, что если событиеА содержитN A элементарных исходов, то в соответствии с определением (*)

P(A) = A

В данном классе ситуаций вероятность события определяется как отношение числа благоприятных исходов к общему числу всех возможных исходов.

Пример . Из набора, содержащего 10 одинаковых на вид электроламп, среди которых 4 бракованных, случайным образом выбирается 5 ламп. Какова вероятность, что среди выбранных ламп будут 2 бракованные?

Прежде всего отметим, что выбор любой пятерки ламп имеет одну и ту же вероятность. Всего существует C 10 5 способов составить такую пятерку, то есть случайный эксперимент в данном случае имеетC 10 5 равновероятных исходов.

Сколько из этих исходов удовлетворяют условию "в пятерке две бракованные лампы", то есть сколько исходов принадлежат интересующему нас событию?

Каждую интересующую нас пятерку можно составить так: выбрать две бракованные лампы, что можно сделать числом способов, равным C 4 2 . Каждая пара бракованных ламп может встретиться столько раз, сколькими способами ее можно дополнить тремя не бракованными лампами, то естьÑ 6 3 раз. Получается, что число пятерок, содержащих две

Статистическое определение вероятности.

Рассмотрим случайный эксперимент, заключающийся в том, что подбрасывается игральная кость, сделанная из неоднородного материала. Ее центр тяжести не находится в геометрическом центре. В этом случае мы не можем считать исходы (выпадение единицы, двойки и т.д.) равновероятными. Из физики известно, что кость более часто будет падать на ту грань, которая ближе к центру тяжести. Как определить вероятность выпадения, например, трех очков? Единственное, что можно сделать, это подбросить эту кость n раз (где n -достаточно большое число, скажемn =1000 илиn =5000), подсчитать число выпадений трех очковn 3 и считать вероятность исхода, заключающегося в выпадении трех очков, равнойn 3 /n - относительной частоте выпадения трех очков. Аналогичным образом можно определить вероятности остальных элементарных исходов - единицы, двойки, четверки и т.д. Теоретически такой образ действий можно оправдать, если ввестистатистическое определение вероятности .

Вероятность P(M i ) определяется как предел относительной частоты появления исходаM i в процессе неограниченного увеличения числа случайных экспериментовn , то есть

P i = P (M i ) = lim m n (M i ) , n ®¥n

где m n (M i ) – число случайных экспериментов (из общего числаn произведенных случайных экспериментов), в которых зарегистрировано появление элементарного исходаM i .

Так как здесь не приводится никаких доказательств, мы можем только надеяться, что предел в последней формуле существует, обосновывая надежду жизненным опытом и интуицией.

Геометрическая вероятность

В одном специальном случае дадим определение вероятности события для случайного эксперимента с несчетным множеством исходов.

Если между множеством W элементарных исходов случайного эксперимента и множеством точек некоторой плоской фигурыS (сигма большая) можно установить взаимно-однозначное соответствие, а также можо установить взаимно-однозначное соответствие между множеством элементарных исходов, благоприятствующих событиюА , и множеством точек плоской фигурыI (сигма малая), являющейся частью фигурыS , то

P(A) = S ,

где s - площадь фигурыs ,S - площадь фигурыS .

Пример. Два человека обедают в столовой, которая открыта с 12 до 13 часов. Каждый из них приходит в произвольный момент времени и обедает в течение 10 минут. Какова вероятность их встречи?

Пусть x - время прихода первого в столовую, аy - время прихода второго

12 £ x £ 13; 12 £y £ 13.

Можно установить взаимно-однозначное соответствие между всеми парами чисел (x ;y ) (или множеством исходов) и множеством точек квадрата со стороной, равной 1, на координатной плоскости, где начало координат соответствует числу 12 по осиX и по осиY , как изображено на рисунке 6. Здесь, например, точкаА соответствует исходу, заключающемуся в том, что первый пришел в 12.30, а второй - в 13.00. В этом случае, очевидно,

встреча не состоялась.

Если первый пришел не позже второго (y ³ x ), то

встреча произойдет при условии 0 £ y - x £ 1/6

(10 мин.- это 1/6 часа).

Если второй пришел не позже первого (x ³ y ), то

встреча произойдет при условии 0 £ x - y £ 1/6..

Между множеством исходов, благоприятствующих

встрече, и множеством точек области s , изображенной на

рисунке 7 в заштрихованном виде, можно установить

взаимно-однозначное cоответствие.

Искомая вероятность p равна отношению площади

области s к площади всего квадрата.. Площадь квадрата

равна единице, а площадь области s можно определить как

разность единицы и суммарной площади двух

треугольников, изображенных на рисунке 7. Отсюда следует:

p =1 -

Непрерывное вероятностное пространство.

Как уже говорилось ранее, множество элементарных исходов может быть более, чем счетным (то есть несчетным). В этом случае нельзя считать любое подмножество множества W событием.

Чтобы ввести определение случайного события, рассмотрим систему (конечную или счетную) подмножеств A 1 , A 2 ,... A n пространства элементарных исходовW .

В случае выполнения трех условий: 1) W принадлежит этой системе;

2) из принадлежности А этой системе следует принадлежностьA этой системе;

3) из принадлежностиA i иA j этой системе следует принадлежностьA i U A j этой

системе такая система подмножеств называется алгеброй.

Пусть W - некоторое пространство элементарных исходов. Убедитесь в том, что две системып одмножеств:

1) W ,Æ ; 2)W ,А ,A ,Æ (здесьА - подмножествоW ) являются алгебрами.

Пусть A 1 иA 2 принадлежат некоторой алгебре. Докажите, чтоA 1 \A 2 иA 1 ∩ A 2 принадлежат этой алгебре.

Подмножество А несчетного множества элементарных исходов 9 является событием, если оно принадлежит некоторой алгебре.

Сформулируем аксиому, называемую аксиомой А.Н. Колмогорова.

Каждому событию соответствует неотрицательное и не превосходящее единицы число P(А), называемое вероятностью событияА , причем функцияP(А) обладает следующими свойствами:

1) Р (9 )=1

2) если события A 1 ,A 2 ,...,A n несовместны, то

P (A 1 U A 2 U ... U A n ) =P (A 1 ) +P (A 2 ) +... +P (A n )

Если задано пространство элементарных исходов W , алгебра событий и определенная на ней функцияР , удовлетворяющая условиям приведенной аксиомы, то говорят, что задановероятностное пространство .

Это определение вероятностного пространства можно перенести на случай конечного пространства элементарных исходов W . Тогда в качестве алгебры можно взять систему всех подмножеств множестваW .

Формулы сложения вероятностей.

Из пункта 2 приведенной аксиомы следует, что если A 1 и A2 несовместные события, то

P (A 1 U A 2 ) =P (A 1 ) +P (A 2 )

Если A 1 иA 2 - совместные события, тоA 1 U A 2 =(A 1 \A 2 )U A 2 , причем очевидно, чтоA 1 \A 2 иA 2 - несовместные события. Отсюда следует:

P (A 1 U A 2 ) =P (A1 \A 2 ) +P (A2 )

Далее очевидно: A 1 = (A1 \A 2 )U (A 1 ∩ A 2 ), причем A1 \A 2 иA 1 ∩ A 2 - несовместные события, откуда следует:P (A 1 ) =P (A1 \A 2 ) +P (A 1 ∩ A 2 ) Найдем из этой формулы выражение дляP (A1 \A 2 ) и подставим его в правую часть формулы (*). В результате получим формулу сложения вероятностей:

P (A 1 U A 2 ) =P (A 1 ) +P (A 2 ) –P (A 1 ∩ A 2 )

Из последней формулы легко получить формулу сложения вероятностей для несовместных событий, положив A 1 ∩ A 2 =Æ .

Пример. Найти вероятность вытащить туза или червовую масть при случайном отборе одной карты из колоды в 32 листа.

Р (ТУЗ) = 4/32 = 1/8;Р (ЧЕРВОВАЯ МАСТЬ) = 8/32 = 1/4;

Р (ТУЗ ЧЕРВЕЙ) = 1/32;

Р ((ТУЗ)U (ЧЕРВОВАЯ МАСТЬ)) = 1/8 + 1/4 - 1/32 =11/32

Того же результата можно было достичь с помощью классического определения вероятности, пересчитав число благоприятных исходов.

Условные вероятности.

Рассмотрим задачу. Студент перед экзаменом выучил из 30 билетов билеты с номерами с 1 по 5 и с 26 по 30. Известно, что студент на экзамене вытащил билет с номером, не превышающим 20. Какова вероятность, что студент вытащил выученный билет?

Определим пространство элементарных исходов: W =(1,2,3,...,28,29,30). Пусть событиеА заключается в том, что студент вытащил выученный билет:А = (1,...,5,25,...,30,), а событиеВ - в том, что студент вытащил билет из первых двадцати:В = (1,2,3,...,20)

Событие А ∩ В состоит из пяти исходов: (1,2,3,4,5), и его вероятность равна 5/30. Это число можно представить как произведение дробей 5/20 и 20/30. Число 20/30 - это вероятность событияB . Число 5/20 можно рассматривать как вероятность событияА при условии, что событиеВ произошло (обозначим еёР (А /В )). Таким образом решение задачи определяется формулой

P (А ∩ В ) =Р (А /В )Р (B )

Эта формула называется формулой умножения вероятностей, а вероятность Р (А /В ) - условной вероятностью событияA .

Пример..Из урны, содержащей 7 белых и 3 черных шаров, наудачу один за другим извлекают (без возвращения) два шара. Какова вероятность того, что первый шар будет белым, а второй черным?

Пусть X - событие, состоящее в извлечении первым белого шара, аY - событие, состоящее в извлечении вторым черного шара. ТогдаX ∩ Y - событие, заключающееся в том, что первый шар будет белым, а второй - черным.P (Y /X ) =3/9 =1/3 - условная вероятность извлечения вторым черного шара, если первым был извлечен белый. Учитывая, чтоP (X ) = 7/10, по формуле умножения вероятностей получаем:P (X ∩ Y ) = 7/30

Событие А называется независимым от события В (иначе: события А и В называются независимыми), если Р (А / В )= Р (А ). За определение независимых событий можно принять следствие последней формулы и формулы умножения

P (А ∩ В ) =Р (А )Р (B )

Докажите самостоятельно, что если А иВ - независимые события, тоA иB тоже являются независимыми события.

Пример.Рассмотрим задачу, аналогичную предыдущей, но с одним дополнительным условием: вытащив первый шар, запоминаем его цвет и возвращаем шар в урну, после чего все шары перемешиваем. В данном случае результат второго извлечения никак не зависит от того, какой шар - черный или белый появился при первом извлечении. Вероятность появления первым белого шара (событие А ) равна 7/10. Вероятность событияВ - появления вторым черного шара - равна 3/10. Теперь формула умножения вероятностей дает:P (А ∩ В ) = 21/100.

Извлечение шаров способом, описанным в этом примере, называется выборкой с возвращением иливозвратной выборкой .

Следует отметить, что если в двух последних примерах положить изначальные количества белых и черных шаров равными соответственно 7000 и 3000, то результаты расчетов тех же вероятностей будут отличаться пренебрежимо мало для возвратной и безвозвратной выборок.

Классическое и статистическое определение вероятности

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ГИМНАЗИЯ № 6

на тему «Классическое определение вероятности».

Выполнила ученица 8 «Б» класса

Климантова Александра.

Учитель по математике: Виденькина В. А.

Воронеж, 2008


Во многих играх используют игральный кубик. У кубика 6 граней, на каждой грани отмечено различное количество точек-от 1 до 6. Играющий бросает кубик и смотрит, сколько точек имеется на выпавшей грани (на той грани, которая располагается сверху). Довольно часто точки на грани кубика заменяют соответствующим числом и тогда говорят о выпадении 1, 2 или 6. Бросание кубика можно считать опытом, экспериментом, испытанием, а полученный результат-исходом испытания или элементарным событием. Людям интересно угадывать наступление того или иного события, предсказывать его исход. Какие предсказания они могут сделать, когда бросают игральный кубик? Например, такие:

1) событие А-выпадает цифра 1, 2, 3, 4, 5 или 6;

2) событие В-выпадает цифра 7, 8 или 9;

3) событие С-выпадает цифра 1.

Событие А, предсказанное в первом случае, обязательно наступит. Вообще, событие, которое в данном опыте обязательно наступит, называют достоверным событием .

Событие В, предсказанное во втором случае, никогда не наступит, это просто невозможно. Вообще, событие, которое в данном опыте наступить не может, называют невозможным событием .

А событие С, предсказанное в третьем случае, наступит или не наступит? На этот вопрос мы с полной уверенностью ответить не в состоянии, поскольку 1 может выпасть, а может и не выпасть. Событие, которое в данном опыте может как наступить, так и не наступить, называют случайным событием .

Думая про наступление достоверного события, мы слово «вероятно» использовать, скорее всего, не будем. Например, если сегодня среда, то завтра четверг, это-достоверное событие. Мы в среду не станем говорить: «Вероятно, завтра четверг», мы скажем коротко и ясно: «Завтра четверг». Правда, если мы склонны к красивым фразам, то можем сказать так: «Со стопроцентной вероятностью утверждаю, что завтра четверг». Напротив, если сегодня среда, то наступление назавтра пятницы-невозможное событие. Оценивая это событие в среду, мы можем сказать так: «Уверен, что завтра не пятница». Или так: «Невероятно, что завтра пятница». Ну а если мы склонны к красивым фразам, то можем сказать так: «Вероятность того, что завтра пятница, равна нулю». Итак, достоверное событие-это событие, наступающее при данных условиях со стопроцентной вероятностью (т. е. наступающее в 10 случаях из 10, в 100 случаях из 100 и т. д.). Невозможное событие-это событие, не наступающее при данных условиях никогда, событие с нулевой вероятностью .

Но, к сожалению (а может быть, и к счастью), не все в жизни так четко и ясно: это будет всегда (достоверное событие), этого не будет никогда (невозможное событие). Чаще всего мы сталкиваемся именно со случайными событиями, одни из которых более вероятны, другие менее вероятны. Обычно люди используют слова «более вероятно» или «менее вероятно», как говорится, по наитию, опираясь на то, что называют здравым смыслом. Но очень часто такие оценки оказываются недостаточными, поскольку бывает важно знать, на сколько процентов вероятно случайное событие или во сколько раз одно случайное событие вероятнее другого. Иными словами, нужны точные количественные характеристики, нужно уметь охарактеризовать вероятность числом.

Первые шаги в этом направлении мы уже сделали. Мы говорили, что вероятность наступления достоверного события характеризуется как стопроцентная , а вероятность наступления невозможного события-как нулевая . Учитывая, что 100 % равно 1, люди договорились о следующем:

1) вероятность достоверного события считается равной 1;

2) вероятность невозможного события считается равной 0.

А как подсчитать вероятность случайного события? Ведь оно произошло случайно , значит, не подчиняется закономерностям, алгоритмам, формулам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности. Этим занимается раздел математики, который так и называется–теория вероятностей .

Математика имеет дело с моделью некоторого явления окружающей нас действительности. Из всех моделей, используемых в теории вероятностей, мы ограничимся самой простой.

Классическая вероятностная схема

Для нахождения вероятности события А при проведении некоторого опыта следует:

1) найти число N всех возможных исходов данного опыта;

2) принять предположение о равновероятности (равновозможности) всех этих исходов;

3) найти количество N(А) тех исходов опыта, в которых наступает событие А;

4) найти частное; оно и будет равно вероятности события А.

Принято вероятность события А обозначать: Р(А). Объяснение такого обозначения очень простое: слово «вероятность» по-французски–probabilite , по-английски–probability .В обозначении используется первая буква слова.

Используя это обозначение, вероятность события А по классической схеме можно найти с помощью формулы

Р(А)=.

Часто все пункты приведенной классической вероятностной схемы выражают одной довольно длинной фразой.

Классическое определение вероятности

Вероятностью события А при проведении некоторого испытания называют отношение числа исходов, в результате которых наступает событие А, к общему числу всех равновозможных между собой исходов этого испытания.

Пример 1 . Найти вероятность того, что при одном бросании игрального кубика выпадет: а) 4; б) 5; в) четное число очков; г) число очков, большее 4; д) число очков, не кратное трем.

Решение . Всего имеется N=6 возможных исходов: выпадение грани куба с числом очков, равным 1, 2, 3, 4, 5 или 6. Мы считаем, что ни один из них не имеет никаких преимуществ перед другими, т. е. принимаем предположение о равновероятности этих исходов.

а) Ровно в одном из исходов произойдет интересующее нас событие А–выпадение числа 4. Значит, N(A)=1 и

P ( A )= =.

б) Решение и ответ такие же, как и в предыдущем пункте.

в) Интересующее нас событие В произойдёт ровно в трёх случаях, когда выпадает число очков 2, 4 или 6. Значит,

N ( B )=3 и P ( B )==.

г) Интересующее нас событие С произойдет ровно в двух случаях, когда выпадет число очков 5 или 6. Значит,

N ( C ) =2 и Р(С)=.

д) Из шести возможных выпавших чисел четыре (1, 2, 4 и 5) не кратны трем, а остальные два (3 и 6) делятся на три. Значит, интересующее нас событие наступает ровно в четырех из шести возможных и равновероятных между собой и равновероятных между собой исходах опыта. Поэтому в ответе получается

. ; б) ; в) ; г) ; д).

Реальный игральный кубик вполне может отличаться от идеального (модельного) кубика, поэтому для описания его поведения требуется более точная и детальная модель, учитывающая преимущества одной грани перед другой, возможное наличие магнитов и т. п. Но «дьявол кроется в деталях», а большая точность ведет, как правило, к большей сложности, и получение ответа становится проблемой. Мы же ограничиваемся рассмотрением простейшей вероятностной модели, где все возможные исходы равновероятны.

Замечание 1 . Рассмотрим еще пример. Был задан вопрос: «Какова вероятность выпадения тройки при одном бросании кубика?» Ученик ответил так: «Вероятность равна 0, 5». И объяснил свой ответ: «Тройка или выпадет, или нет. Значит, всего есть два исхода и ровно в одном наступает интересующее нас событие. По классической вероятностной схеме получаем ответ 0, 5». Есть в этом рассуждении ошибка? На первый взгляд–нет. Однако она все же есть, причем в принципиальном моменте. Да, действительно, тройка или выпадет, или нет, т. е. при таком определении исхода бросания N=2. Правда и то, что N(A)=1 и уж, разумеется, верно, что

=0, 5, т. е. три пункта вероятностной схемы учтены, а вот выполнение пункта 2) вызывает сомнения. Конечно, с чисто юридической точки зрения, мы имеем право считать, что выпадение тройки равновероятно ее невыпадению. Но вот можем ли мы так считать, не нарушая свои же естественные предположения об «одинаковости» граней? Конечно, нет! Здесь мы имеем дело с правильным рассуждением внутри некоторой модели. Только вот сама эта модель «неправильная», не соответствующая реальному явлению.

Замечание 2 . Рассуждая о вероятности, не упускайте из виду следующее важное обстоятельство. Если мы говорим, что при бросании кубика вероятность выпадения одного очка равна

, это совсем не значит, что, кинув кубик 6 раз, вы получите одно очко ровно один раз, бросив кубик 12 раз, вы получите одно очко ровно два раза, бросив кубик 18 раз, вы получите одно очко ровно три раза и т. д. Слово вероятно носит предположительный характер. Мы предполагаем, что скорее всего может произойти. Вероятно, если мы бросим кубик 600 раз, одно очко выпадет 100 раз или около 100.

Разберём классическое определение вероятности при помощи формул и примеров.

Случайные события называются несовместимыми , если они не могут происходить одновременно. Например, когда мы подкидываем монету, выпадет что-то одно – «герб» или число» и они не могут появится одновременно, так как логично, что это невозможно. Несовместимыми могут быть такие события, как попадание и промах после сделанного выстрела.

Случайные события конечного множества образовывают полную группу попарно несовместимых событий, если при каждом испытании появляется одна, и только одна из этих событий – единственно возможные.

Рассмотрим всё тот же пример с подкидыванием монеты:

Первая монета Вторая монета События

1) «герб» «герб»

2) «герб» «число»

3) «число» «герб»

4) «число» «число»

Или сокращённо – «ГГ», – «ГЧ», – «ЧГ», – «ЧЧ».

События называются равновозможными , если условия исследования обеспечивают одинаковую возможность появления каждой из них.

Как вы понимаете, когда подбрасываете симметричную монету, тогда у неё одинаковые возможности, и есть вероятность, что выпадет как «герб», так и «число». Это же касается подбрасывания симметричного игрального кубика, так как есть вероятность того, что могут появится грани с любым числом 1, 2, 3, 4, 5, 6.

Допустим, что теперь кубик подбрасываем со смещением центра тяжести, например, в сторону грани с цифрой 1, тогда чаще всего будет выпадать противоположная грань, то есть грань с другой цифрой. Таким образом, в этой модели возможности появления для каждой из цифр от 1 до 6 будут разными.

Равновозможные и единственно возможные случайные события называются случаями.

Есть случайные события, которые относятся к случаям, а есть случайные события, которые не относятся к случаям. Ниже на примерах рассмотрим эти события.

Те случаи, в результате которых случайное событие появляется, называются благоприятными случаями для этого события.

Если обозначить через , которые влияют на событие при всех возможных случаях, а через – вероятность случайного события , тогда можно записать известное классическое определение вероятности:

Определение

Вероятность события называют отношения числа благоприятных этому событию случаев, к общему числу всех возможных случаев, то есть:

Свойства вероятности

Классическая вероятность рассмотрена, а теперь разберём основные и важные свойства вероятности.

Свойство 1. Вероятность достоверного события равняется единице.

Например, если в ведёрке все шариков белые, тогда событию , наугад выбрать белый шарик, влияют случаев, .

Свойство 2. Вероятность невозможного события равняется нулю.

Свойство 3. Вероятностью случайного события есть положительное число:

Значит, вероятность любого события удовлетворяет неравенство:

Теперь решим несколько примеров на классическое определение вероятности.

Примеры классического определения вероятности

Пример 1

Задача

В корзине 20 шариков, из них 10 белых, 7 красных и 3 чёрных. Наугад выбирается один шарик. Выбран белый шарик (событие ), красный шарик (событие ) и чёрный шарик (событие ). Найти вероятность случайных событий .

Решение

Согласно условию задачи, способствуют , а случаев из возможных, поэтому по формуле (1):

– вероятность белого шарика.

Аналогично для красного:

И для чёрного: .

Ответ

Вероятность случайного события , , .

Пример 2

Задача

В ящике лежат 25 одинаковых электроламп, из них 2 бракованные. Найти вероятность того, что наугад выбранная электролампа не бракованная.

Решение

По условию задачи все лампы одинаковые и выбирается только одна. Всего возможностей выбрать . Среди всех 25 лампа две бракованные, значит, оставшихся пригодных лампа . Поэтому по формуле (1) вероятность выбора пригодной электролампы (событие ) равняется:

Ответ

Вероятность того, что наугад выбранная электролампа не бракованная = .

Пример 3

Задача

Наугад подбрасываются две монеты. Найти вероятность таких событий:

1) – на обеих монетах выпало по гербу;

2) – на одной из монет выпал герб, а на второй – число;

3) – на обеих монетах выпали числа;

4) – хотя бы один раз выпал герб.

Решение

Здесь имеем дело с четырьмя событиями . Установим, какие случаи способствуют каждой из них. Событию способствует один случай, это когда на обеих монетах выпал герб (сокращённо «ГГ»).

Чтобы разобраться с событием , представим, что одна монета серебряная, а вторая – медная. При подбрасывании монет могут быть случаи:

1) на серебряной герб, на медной – число (обозначим – «ГЧ»);

2) на серебряной число, на медной – герб ( – «ЧГ»).

Значит, событию способствуют случаи и .

Событию способствует один случай: на обеих монетах выпали числа – «ЧЧ».

Таким образом, события или (ГГ, ГЧ, ЧГ, ЧЧ) образовывают полную группу событий, все эти события несовместимы, так как в результате подбрасывания происходит только одна из них. Кроме того, для симметричных монет все четыре события равновозможные, поэтому их можно считать случаями. Всех возможных событий – четыре .

Событию способствует только одно событие, поэтому его вероятность равняется:

Событию способствуют два случая , поэтому:

Вероятность события такая же, как и для :

Событию способствуют три случая: ГГ, ГЧ, ЧГ и поэтому:

Так как рассмотрены события ГГ, ГЧ, ЧГ, ЧЧ, которые равновозможные и создают полную группу событий, тогда появление любой из них – это достоверное событие (обозначим её буквой , которой способствуют все 4 случая . Поэтому вероятность:

Значит, подтверждается первое свойство вероятности.

Ответ

Вероятность события .

Вероятность события .

Вероятность события .

Вероятность события .

Пример 4

Задача

Подкидываются два игральных кубика с одинаковой и правильной геометрической формой. Найти вероятность всех возможных сумм на обеих гранях, что выпадают.

Решение

Чтобы было удобнее решать задачу, представьте, что один кубик белый, а второй – чёрный. С каждой из шести граней белого кубика и также может выпасть одна из шести граней чёрного кубика, поэтому всех возможных пар будет .

Так как возможность появления граней на отдельном кубике одинаковая (кубики правильной геометрической формы!), тогда одинаковой будет возможность появления каждой пары граней, причём, в результате подбрасывания выпадает только одна из пар. Значи события несовместимы, единовозможные. Это случаи, и всех возможных случаев – 36.

Теперь рассмотрим возможность значения суммы на гранях. Очевидно, что самая маленькая сумма 1 + 1 = 2, а самая большая 6 + 6 = 12. Оставшаяся часть суммы вырастает на единицу, начиная со второй. Обозначим событий, индексы которых равняются сумме очков, что выпали на гранях кубиков. Для каждой из этих событий выпишем благоприятные случаи при помощи обозначений , где – сумма, – очки на верхней грани белого кубика и – очки на грани чёрного кубика.

Значит, для события:

для – один случай (1 + 1);

для – два случая (1 + 2; 2 + 1);

для – три случая (1 + 3; 2 + 2; 3 + 1);

для – четыре случая (1 + 4; 2 + 3; 3 + 2; 4 + 1);

для – пять случаев (1 + 5; 2 + 4; 3 + 3; 4 + 2; 5 + 1);

для – шесть случаев (1 + 6; 2 + 5; 3 + 4; 4 + 3; 5 + 2; 6 + 1);

для – пять случаев (2 + 6; 3 + 5; 4 + 4; 5 + 3; 6 + 2);

для – четыре случая (3 + 6; 4 + 5; 5 + 4; 6 + 3);

для – три случая (4 + 6; 5 + 5; 6 + 4);

для – два случая (5 + 6; 6 + 5);

для – один случай (6 + 6).

Таким образом значения вероятности такие:

Ответ

Пример 5

Задача

Троим участникам перед фестивалем предложили тянуть жребий: каждый из участников по очереди подходит к ведёрку и наугад выбирает одну из трёх карточек с номерами 1, 2 и 3, что означает порядковый номер выступления данного участника.

Найти вероятность таких событий:

1) – порядковый номер в очереди совпадает с номером карточки, то есть порядковым номером выступления;

2) – ни один номер в очереди не совпадает с номером выступления;

3) – только один из номеров в очереди совпадает с номером выступления;

4) – хотя бы один из номеров в очереди совпадёт с номером выступления.

Решение

Возможными результатами выбора карточек – это перестановки из трёх элементов , количество таких перестановок равняется . Каждая из перестановок и есть событие. Обозначим эти события через . Каждому событию припишем в скобках соответствующую перестановку:

; ; ; ; ; .

Перечисленные события равновозможные и единовозможные, то есть, это и есть случаи. Обозначим так: (1ч, 2ч, 3ч) – соответствующие номера в очереди.

Начнём с события . Благоприятный только один случай поэтому:

Благоприятными для события – два случая и , поэтому:

Событию способствуют 3 случая: , поэтому:

Событию , кроме , способствует ещё и , то есть:

Ответ

Вероятность события – .

Вероятность события – .

Вероятность события – обновлено: Сентябрь 15, 2017 автором: Научные Статьи.Ру

Классическая вероятность и ее свойства

Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим.

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равновозможных исходов опыта, в котором может появиться это событие.

Вероятность события А обозначают через Р(А) (здесь Р – первая буква французского слова probabilite – вероятность).

В соответствии с определением

где – число элементарных исходов испытания, благоприятствующих появлению события ;

Общее число возможных элементарных исходов испытания.

Это определение вероятности называют классическим . Оно возникло на начальном этапе развития теории вероятностей.

Часто число называют относительной частотой появления события А в опыте.

Чем больше вероятность события, тем чаще оно наступает, и наоборот, чем меньше вероятность события, тем реже оно наступает. Когда вероятность события близка к единице или равна единице, то оно наступает почти при всех испытаниях. О таком событии говорят, что оно практически достоверно , т. е. что можно наверняка рассчитывать на его наступление.

Наоборот, когда вероятность равна нулю или очень мала, то событие наступает крайне редко; о таком событии говорят, что оно практически невозможно .

Иногда вероятность выражают в процентах: Р(А) 100% есть средний процент числа появлений события A .

Пример 2.13. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.

Решение.

Обозначим через А событие - «набрана нужная цифра».

Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна).

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

Формула классической вероятности дает очень простой, не требующий проведения экспериментов, способ вычисления вероятностей. Однако простота этой формулы очень обманчива. Дело в том, что при ее использовании возникают, как правило, два очень непростых вопроса:

1. Как выбрать систему исходов опыта так, чтобы они были равновозможны, и можно ли это сделать вообще?

2. Как найти числа m и n ?

Если в опыте участвуют несколько предметов, равновозможные исходы увидеть не всегда просто.

Великий французский философ и математик Даламбер вошел в историю теории вероятностей со своей знаменитой ошибкой, суть которой в том, что он неверно определил равновозможность исходов в опыте всего с двумя монетами!

Пример 2.14. (ошибка Даламбера ). Подбрасываются две одинаковые монеты. Какова вероятность того, что они упадут на одну и ту же сторону?

Решение Даламбера.

Опыт имеет три равновозможных исхода:

1. Обе монеты упадут на «орла»;

2. Обе монеты упадут на «решку»;

3. Одна из монет упадет на «орла», другая на «решку».

Правильное решение.

Опыт имеет четыре равновозможных исхода:

1. Первая монета упадет на «орла», вторая тоже на «орла»;

2. Первая монета упадет на «решку», вторая тоже на «решку»;

3. Первая монета упадет на «орла», а вторая - на «решку»;

4. Первая монета упадет на «решку», а вторая - на «орла».

Из них благоприятными для нашего события будут два исхода, поэтому искомая вероятность равна .

Даламбер совершил одну из самых распространенных ошибок, допускаемую при вычислении вероятности: он объединил два элементарных исхода в один, тем самым сделав его не равным по вероятности оставшимся исходам опыта.